BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11113571)

  • 1. Mechanism of superoxide anion generation in the toxic red tide phytoplankton Chattonella marina: possible involvement of NAD(P)H oxidase.
    Kim D; Nakamura A; Okamoto T; Komatsu N; Oda T; Iida T; Ishimatsu A; Muramatsu T
    Biochim Biophys Acta; 2000 Dec; 1524(2-3):220-7. PubMed ID: 11113571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible factors responsible for the toxicity of Cochlodinium polykrikoides, a red tide phytoplankton.
    Kim D; Oda T; Muramatsu T; Kim D; Matsuyama Y; Honjo T
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Aug; 132(4):415-23. PubMed ID: 12223197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of reactive oxygen species by raphidophycean phytoplankton.
    Oda T; Nakamura A; Shikayama M; Kawano I; Ishimatsu A; Muramatsu T
    Biosci Biotechnol Biochem; 1997 Oct; 61(10):1658-62. PubMed ID: 9362113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the role of the carboxyl terminus of the gp91phox subunit of neutrophil flavocytochrome b558 using site-directed mutagenesis.
    Zhen L; Yu L; Dinauer MC
    J Biol Chem; 1998 Mar; 273(11):6575-81. PubMed ID: 9497394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galacturonic-acid-induced increase of superoxide production in red tide phytoplankton Chattonella marina and Heterosigma akashiwo.
    Kim D; Oda T; Ishimatsu A; Muramatsu T
    Biosci Biotechnol Biochem; 2000 Apr; 64(4):911-4. PubMed ID: 10830520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion mutagenesis of p22phox subunit of flavocytochrome b558: identification of regions critical for gp91phox maturation and NADPH oxidase activity.
    Zhu Y; Marchal CC; Casbon AJ; Stull N; von Löhneysen K; Knaus UG; Jesaitis AJ; McCormick S; Nauseef WM; Dinauer MC
    J Biol Chem; 2006 Oct; 281(41):30336-46. PubMed ID: 16895900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide production and expression of NAD(P)H oxidases by transformed and primary human colonic epithelial cells.
    Perner A; Andresen L; Pedersen G; Rask-Madsen J
    Gut; 2003 Feb; 52(2):231-6. PubMed ID: 12524405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of localization and function of the COOH-terminal corresponding site of cytochrome b558 in fish neutrophils.
    Shiibashi T; Iida T; Itou T
    Dev Comp Immunol; 1999 Apr; 23(3):213-9. PubMed ID: 10402208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs.
    Keller T; Damude HG; Werner D; Doerner P; Dixon RA; Lamb C
    Plant Cell; 1998 Feb; 10(2):255-66. PubMed ID: 9490748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils.
    Bergin D; Reeves EP; Renwick J; Wientjes FB; Kavanagh K
    Infect Immun; 2005 Jul; 73(7):4161-70. PubMed ID: 15972506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH oxidase of chondrocytes contains an isoform of the gp91phox subunit.
    Moulton PJ; Goldring MB; Hancock JT
    Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):449-51. PubMed ID: 9445369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase.
    Li JM; Shah AM
    Cardiovasc Res; 2001 Dec; 52(3):477-86. PubMed ID: 11738065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intestinal NADPH oxidase 2 activity increases in a neonatal rat model of necrotizing enterocolitis.
    Welak SR; Rentea RM; Teng RJ; Heinzerling N; Biesterveld B; Liedel JL; Pritchard KA; Fredrich KM; Gourlay DM
    PLoS One; 2014; 9(12):e115317. PubMed ID: 25517730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of p40phox in activation of phagocyte NADPH oxidase through association of its carboxyl-terminal, but not its amino-terminal, with p67phox.
    Tsunawaki S; Kagara S; Yoshikawa K; Yoshida LS; Kuratsuji T; Namiki H
    J Exp Med; 1996 Sep; 184(3):893-902. PubMed ID: 9064349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells.
    Bayraktutan U; Draper N; Lang D; Shah AM
    Cardiovasc Res; 1998 Apr; 38(1):256-62. PubMed ID: 9683929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidase subunit gp91phox: a proton pathway.
    Henderson LM
    Protoplasma; 2001; 217(1-3):37-42. PubMed ID: 11732336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pitfalls of using lucigenin in endothelial cells: implications for NAD(P)H dependent superoxide formation.
    Sohn HY; Keller M; Gloe T; Crause P; Pohl U
    Free Radic Res; 2000 Mar; 32(3):265-72. PubMed ID: 10730825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monoclonal antibody 7D5 recognizes the R147 epitope on the gp91
    Kawai C; Yamauchi A; Kuribayashi F
    Microbiol Immunol; 2018 Apr; 62(4):269-280. PubMed ID: 29573449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of superoxide anion and hydrogen peroxide by the red tide dinoflagellate Karenia mikimotoi.
    Yamasaki Y; Kim DI; Matsuyama Y; Oda T; Honjo T
    J Biosci Bioeng; 2004; 97(3):212-5. PubMed ID: 16233617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of NADPH oxidase in oxidative stress injury of human dermal fibroblasts].
    Chen Y; Huang H; Tang HF; Zheng XF; Hu Y; Wang RH
    Nan Fang Yi Ke Da Xue Xue Bao; 2016 Mar; 36(3):391-5. PubMed ID: 27063169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.