BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11114166)

  • 1. Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation.
    Kim JE; Chen J
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14340-5. PubMed ID: 11114166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse.
    Hentges KE; Sirry B; Gingeras AC; Sarbassov D; Sonenberg N; Sabatini D; Peterson AS
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13796-801. PubMed ID: 11707573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frap, FKBP12 rapamycin-associated protein, is a candidate gene for the plasmacytoma resistance locus Pctr2 and can act as a tumor suppressor gene.
    Bliskovsky V; Ramsay ES; Scott J; DuBois W; Shi W; Zhang S; Qian X; Lowy DR; Mock BA
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14982-7. PubMed ID: 14634209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein kinase C phosphorylates ribosomal protein S6 kinase betaII and regulates its subcellular localization.
    Valovka T; Verdier F; Cramer R; Zhyvoloup A; Fenton T; Rebholz H; Wang ML; Gzhegotsky M; Lutsyk A; Matsuka G; Filonenko V; Wang L; Proud CG; Parker PJ; Gout IT
    Mol Cell Biol; 2003 Feb; 23(3):852-63. PubMed ID: 12529391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysine demethylase KDM4A associates with translation machinery and regulates protein synthesis.
    Van Rechem C; Black JC; Boukhali M; Aryee MJ; Gräslund S; Haas W; Benes CH; Whetstine JR
    Cancer Discov; 2015 Mar; 5(3):255-63. PubMed ID: 25564516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleocytoplasmic shuttling and the control of NF-AT signaling.
    Zhu J; McKeon F
    Cell Mol Life Sci; 2000 Mar; 57(3):411-20. PubMed ID: 10823242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Galectin-3 stabilizes heterogeneous nuclear ribonucleoprotein Q to maintain proliferation of human colon cancer cells.
    Yoo BC; Hong SH; Ku JL; Kim YH; Shin YK; Jang SG; Kim IJ; Jeong SY; Park JG
    Cell Mol Life Sci; 2009 Jan; 66(2):350-64. PubMed ID: 19137262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p300 nucleocytoplasmic shuttling underlies mTORC1 hyperactivation in Hutchinson-Gilford progeria syndrome.
    Son SM; Park SJ; Breusegem SY; Larrieu D; Rubinsztein DC
    Nat Cell Biol; 2024 Feb; 26(2):235-249. PubMed ID: 38267537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization.
    Xu T; Johnson CA; Gestwicki JE; Kumar A
    Nat Protoc; 2010 Nov; 5(11):1831-43. PubMed ID: 21030958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predominant nuclear localization of mammalian target of rapamycin in normal and malignant cells in culture.
    Zhang X; Shu L; Hosoi H; Murti KG; Houghton PJ
    J Biol Chem; 2002 Aug; 277(31):28127-34. PubMed ID: 12000755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mTOR at the nexus of nutrition, growth, ageing and disease.
    Liu GY; Sabatini DM
    Nat Rev Mol Cell Biol; 2020 Apr; 21(4):183-203. PubMed ID: 31937935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1.
    Kantidakis T; Ramsbottom BA; Birch JL; Dowding SN; White RJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11823-8. PubMed ID: 20543138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mTOR signaling in growth control and disease.
    Laplante M; Sabatini DM
    Cell; 2012 Apr; 149(2):274-93. PubMed ID: 22500797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of cytoplasmic and nuclear functions of mTOR by fractionation.
    Rosner M; Hengstschläger M
    Methods Mol Biol; 2012; 821():105-24. PubMed ID: 22125063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells.
    Shor B; Wu J; Shakey Q; Toral-Barza L; Shi C; Follettie M; Yu K
    J Biol Chem; 2010 May; 285(20):15380-15392. PubMed ID: 20233713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1.
    Rosner M; Hengstschläger M
    Hum Mol Genet; 2008 Oct; 17(19):2934-48. PubMed ID: 18614546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutively active Rheb induces oncogenic transformation.
    Jiang H; Vogt PK
    Oncogene; 2008 Sep; 27(43):5729-40. PubMed ID: 18521078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR.
    Bernardi R; Guernah I; Jin D; Grisendi S; Alimonti A; Teruya-Feldstein J; Cordon-Cardo C; Simon MC; Rafii S; Pandolfi PP
    Nature; 2006 Aug; 442(7104):779-85. PubMed ID: 16915281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway.
    Takahashi K; Nakagawa M; Young SG; Yamanaka S
    J Biol Chem; 2005 Sep; 280(38):32768-74. PubMed ID: 16046393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheb binds and regulates the mTOR kinase.
    Long X; Lin Y; Ortiz-Vega S; Yonezawa K; Avruch J
    Curr Biol; 2005 Apr; 15(8):702-13. PubMed ID: 15854902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.