These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11114181)

  • 1. The inducible N-acetylglucosamine catabolic pathway gene cluster in Candida albicans: discrete N-acetylglucosamine-inducible factors interact at the promoter of NAG1.
    Kumar MJ; Jamaluddin MS; Natarajan K; Kaur D; Datta A
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14218-23. PubMed ID: 11114181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-acetylglucosamine utilization by Saccharomyces cerevisiae based on expression of Candida albicans NAG genes.
    Wendland J; Schaub Y; Walther A
    Appl Environ Microbiol; 2009 Sep; 75(18):5840-5. PubMed ID: 19648376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning and analysis of the NAG1 cDNA coding for glucosamine-6-phosphate deaminase from Candida albicans.
    Natarajan K; Datta A
    J Biol Chem; 1993 May; 268(13):9206-14. PubMed ID: 7683645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuation of virulence and changes in morphology in Candida albicans by disruption of the N-acetylglucosamine catabolic pathway.
    Singh P; Ghosh S; Datta A
    Infect Immun; 2001 Dec; 69(12):7898-903. PubMed ID: 11705974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the N-acetylglucosamine kinase (Hxk1) in the regulation of white-gray-opaque tristable phenotypic transitions in C. albicans.
    Cao C; Guan G; Du H; Tao L; Huang G
    Fungal Genet Biol; 2016 Jul; 92():26-32. PubMed ID: 27153757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Characterization of the N-Acetylglucosamine Catabolic Genes in Candida africana, a Natural N-Acetylglucosamine Kinase (HXK1) Mutant.
    Felice MR; Gulati M; Giuffrè L; Giosa D; Di Bella LM; Criseo G; Nobile CJ; Romeo O; Scordino F
    PLoS One; 2016; 11(1):e0147902. PubMed ID: 26808192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymes of N-acetylglucosamine metabolism during germ-tube formation in Candida albicans.
    Gopal P; Sullivan PA; Shepherd MG
    J Gen Microbiol; 1982 Oct; 128(10):2319-26. PubMed ID: 6296272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of the genes for N-acetylglucosamine kinase and N-acetylglucosamine-phosphate deacetylase in the pathogenic fungus Candida albicans.
    Yamada-Okabe T; Sakamori Y; Mio T; Yamada-Okabe H
    Eur J Biochem; 2001 Apr; 268(8):2498-505. PubMed ID: 11298769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-acetylglucosamine (GlcNAc) induction of hyphal morphogenesis and transcriptional responses in Candida albicans are not dependent on its metabolism.
    Naseem S; Gunasekera A; Araya E; Konopka JB
    J Biol Chem; 2011 Aug; 286(33):28671-28680. PubMed ID: 21700702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two membrane proteins located in the Nag regulon of Candida albicans confer multidrug resistance.
    Sengupta M; Datta A
    Biochem Biophys Res Commun; 2003 Feb; 301(4):1099-108. PubMed ID: 12589826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of GIG1, a GlcNAc-induced gene in Candida albicans needed for normal sensitivity to the chitin synthase inhibitor nikkomycin Z.
    Gunasekera A; Alvarez FJ; Douglas LM; Wang HX; Rosebrock AP; Konopka JB
    Eukaryot Cell; 2010 Oct; 9(10):1476-83. PubMed ID: 20675577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The N-acetylglucosamine catabolic gene cluster in Trichoderma reesei is controlled by the Ndt80-like transcription factor RON1.
    Kappel L; Gaderer R; Flipphi M; Seidl-Seiboth V
    Mol Microbiol; 2016 Feb; 99(4):640-57. PubMed ID: 26481444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-acetylglucosamine (GlcNAc)-inducible gene GIG2 is a novel component of GlcNAc metabolism in Candida albicans.
    Ghosh S; Hanumantha Rao K; Bhavesh NS; Das G; Dwivedi VP; Datta A
    Eukaryot Cell; 2014 Jan; 13(1):66-76. PubMed ID: 24186949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of Poly-β1,4-
    Keffeler EC; Parthasarathy S; Abdullahi ZH; Hancock LE
    J Bacteriol; 2021 Oct; 203(21):e0037121. PubMed ID: 34424034
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Zhang Q; Xu L; Yuan S; Zhou Q; Wang X; Wang L; Hu Z; Yan Y
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516879
    [No Abstract]   [Full Text] [Related]  

  • 16. N-acetylglucosamine, the building block of chitin, inhibits growth of Neurospora crassa.
    Gaderer R; Seidl-Seiboth V; de Vries RP; Seiboth B; Kappel L
    Fungal Genet Biol; 2017 Oct; 107():1-11. PubMed ID: 28736299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the CaNAG3, CaNAG4, and CaNAG6 genes of the pathogenic fungus Candida albicans: possible involvement of these genes in the susceptibilities of cytotoxic agents.
    Yamada-Okabe T; Yamada-Okabe H
    FEMS Microbiol Lett; 2002 Jun; 212(1):15-21. PubMed ID: 12076781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gratuitous induction by N-acetylmannosamine of germ tube formation and enzymes for N-acetylglucosamine utilization in Candida albicans.
    Sullivan PA; Shepherd MG
    J Bacteriol; 1982 Sep; 151(3):1118-22. PubMed ID: 6286591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Characterization of the GlcNAc Catabolic Pathway in Cryptococcus deneoformans.
    Ye L; Wang S; Zheng J; Chen L; Shen L; Kuang Y; Wang Y; Peng Y; Hu C; Wang L; Tian X; Liao G
    Appl Environ Microbiol; 2022 Jul; 88(13):e0043722. PubMed ID: 35736228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnaporthe oryzae MoNdt80 is a transcriptional regulator of GlcNAc catabolic pathway involved in pathogenesis.
    Bhatt DN; Ansari S; Kumar A; Ghosh S; Narula A; Datta A
    Microbiol Res; 2020 Oct; 239():126550. PubMed ID: 32712567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.