These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 1111423)
1. Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. I. Cell types without spherules. Heatfield BM; Travis DF J Morphol; 1975 Jan; 145(1):13-49. PubMed ID: 1111423 [TBL] [Abstract][Full Text] [Related]
2. Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. II. Cell types with spherules. Heatfield BM; Travis DF J Morphol; 1975 Jan; 145(1):51-71. PubMed ID: 163069 [TBL] [Abstract][Full Text] [Related]
3. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Politi Y; Arad T; Klein E; Weiner S; Addadi L Science; 2004 Nov; 306(5699):1161-4. PubMed ID: 15539597 [TBL] [Abstract][Full Text] [Related]
4. Cellular control over spicule formation in sea urchin embryos: A structural approach. Beniash E; Addadi L; Weiner S J Struct Biol; 1999 Mar; 125(1):50-62. PubMed ID: 10196116 [TBL] [Abstract][Full Text] [Related]
5. Stromal elements for tumor diagnosis: a brief review of diagnostic electron microscopic features. Min KW Ultrastruct Pathol; 2005; 29(3-4):305-18. PubMed ID: 16036885 [TBL] [Abstract][Full Text] [Related]
6. Collagen types I, III, and V in human embryonic and fetal skin. Smith LT; Holbrook KA; Madri JA Am J Anat; 1986 Apr; 175(4):507-21. PubMed ID: 3521252 [TBL] [Abstract][Full Text] [Related]
7. Ultrastructural study of the precursor to fungiform papillae prior to the arrival of sensory nerves in the fetal rat. Iwasaki SI; Asami T; Kageyama I J Morphol; 2001 Dec; 250(3):225-35. PubMed ID: 11746462 [TBL] [Abstract][Full Text] [Related]
8. The fine structure of epidermal glands of regenerating and mature globiferous pedicellariae of a sea urchin (Lytechinus pictus). Holland LZ; Holland ND Tissue Cell; 1975; 7(4):723-37. PubMed ID: 1209591 [TBL] [Abstract][Full Text] [Related]
9. ²⁶Mg labeling of the sea urchin regenerating spine: Insights into echinoderm biomineralization process. Gorzelak P; Stolarski J; Dubois P; Kopp C; Meibom A J Struct Biol; 2011 Oct; 176(1):119-26. PubMed ID: 21803159 [TBL] [Abstract][Full Text] [Related]
10. Epithelial cytodifferentiation and extracellular matrix formation in enamel-free areas of the occlusal cusp during development of mouse molars: light and electron microscopic studies. Sakakura Y; Fujiwara N; Nawa T Am J Anat; 1989 Apr; 184(4):287-97. PubMed ID: 2756904 [TBL] [Abstract][Full Text] [Related]
11. Variation in basement membrane topography in human thick skin. Kawabe TT; MacCallum DK; Lillie JH Anat Rec; 1985 Feb; 211(2):142-8. PubMed ID: 3977083 [TBL] [Abstract][Full Text] [Related]
12. Extracellular matrix of sea urchin and other marine invertebrate embryos. Spiegel E; Howard L; Spiegel M J Morphol; 1989 Jan; 199(1):71-92. PubMed ID: 2921771 [TBL] [Abstract][Full Text] [Related]
13. An electron microscope study of the epidermis of mammalian skin in thin sections. I. Dermo-epidermal junction and basal cell layer. SELBY CC J Biophys Biochem Cytol; 1955 Sep; 1(5):429-44. PubMed ID: 13263331 [TBL] [Abstract][Full Text] [Related]
14. Partial dermal regeneration is induced by biodegradable collagen-glycosaminoglycan grafts. Murphy GF; Orgill DP; Yannas IV Lab Invest; 1990 Mar; 62(3):305-13. PubMed ID: 2314050 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of calcite co-orientation in the sea urchin tooth. Killian CE; Metzler RA; Gong YU; Olson IC; Aizenberg J; Politi Y; Wilt FH; Scholl A; Young A; Doran A; Kunz M; Tamura N; Coppersmith SN; Gilbert PU J Am Chem Soc; 2009 Dec; 131(51):18404-9. PubMed ID: 19954232 [TBL] [Abstract][Full Text] [Related]
16. Matrix and mineral in the sea urchin larval skeleton. Wilt FH J Struct Biol; 1999 Jun; 126(3):216-26. PubMed ID: 10475684 [TBL] [Abstract][Full Text] [Related]
17. Morphology of the air-breathing stomach of the catfish Hypostomus plecostomus. Podkowa D; Goniakowska-Witalińska L J Morphol; 2003 Aug; 257(2):147-63. PubMed ID: 12833376 [TBL] [Abstract][Full Text] [Related]
18. Ultrastructural evidence of cell communication between epithelial dark cells and melanocytes in vestibular organs of the human inner ear. Masuda M; Yamazaki K; Kanzaki J; Hosoda Y Anat Rec; 1995 Jun; 242(2):267-77. PubMed ID: 7668412 [TBL] [Abstract][Full Text] [Related]
19. Modifications of the dermis during scale regeneration in the lizard tail. Alibardi L Histol Histopathol; 1994 Oct; 9(4):733-45. PubMed ID: 7894146 [TBL] [Abstract][Full Text] [Related]
20. Light and electron microscopic investigation of the sensory cell bodies in the epidermis of the foot of the snail Helix pomatia L. Hernádi L Acta Biol Acad Sci Hung; 1981; 32(1):19-32. PubMed ID: 7282207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]