These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structure and dynamics of micelle-bound neuropeptide Y: comparison with unligated NPY and implications for receptor selection. Bader R; Bettio A; Beck-Sickinger AG; Zerbe O J Mol Biol; 2001 Jan; 305(2):307-29. PubMed ID: 11124908 [TBL] [Abstract][Full Text] [Related]
3. Conformation and mode of membrane interaction in cyclotides. Spatial structure of kalata B1 bound to a dodecylphosphocholine micelle. Shenkarev ZO; Nadezhdin KD; Sobol VA; Sobol AG; Skjeldal L; Arseniev AS FEBS J; 2006 Jun; 273(12):2658-72. PubMed ID: 16817894 [TBL] [Abstract][Full Text] [Related]
4. Conformational change and inactivation of membrane phospholipid-related activity of cardiotoxin V from Taiwan cobra venom at acidic pH. Chiang CM; Chien KY; Lin HJ; Lin JF; Yeh HC; Ho PL; Wu WG Biochemistry; 1996 Jul; 35(28):9167-76. PubMed ID: 8703922 [TBL] [Abstract][Full Text] [Related]
5. Two forms of cytotoxin II (cardiotoxin) from Naja naja oxiana in aqueous solution: spatial structures with tightly bound water molecules. Dementieva DV; Bocharov EV; Arseniev AS Eur J Biochem; 1999 Jul; 263(1):152-62. PubMed ID: 10429199 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of cardiotoxin V from Taiwan cobra venom: pH-dependent conformational change and a novel membrane-binding motif identified in the three-finger loops of P-type cardiotoxin. Sun YJ; Wu WG; Chiang CM; Hsin AY; Hsiao CD Biochemistry; 1997 Mar; 36(9):2403-13. PubMed ID: 9054545 [TBL] [Abstract][Full Text] [Related]
7. Structural difference between group I and group II cobra cardiotoxins: X-ray, NMR, and CD analysis of the effect of cis-proline conformation on three-fingered toxins. Chen TS; Chung FY; Tjong SC; Goh KS; Huang WN; Chien KY; Wu PL; Lin HC; Chen CJ; Wu WG Biochemistry; 2005 May; 44(20):7414-26. PubMed ID: 15895985 [TBL] [Abstract][Full Text] [Related]
8. Interaction of the P-type cardiotoxin with phospholipid membranes. Dubovskii PV; Lesovoy DM; Dubinnyi MA; Utkin YN; Arseniev AS Eur J Biochem; 2003 May; 270(9):2038-46. PubMed ID: 12709064 [TBL] [Abstract][Full Text] [Related]
9. Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra)--identification of structural features important for the lethal action of snake venom cardiotoxins. Jayaraman G; Kumar TK; Tsai CC; Srisailam S; Chou SH; Ho CL; Yu C Protein Sci; 2000 Apr; 9(4):637-46. PubMed ID: 10794406 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the hemolytic activity and solution structures of two snake venom cardiotoxin analogues which only differ in their N-terminal amino acid. Jang JY; Krishnaswamy T; Kumar S; Jayaraman G; Yang PW; Yu C Biochemistry; 1997 Dec; 36(48):14635-41. PubMed ID: 9398182 [TBL] [Abstract][Full Text] [Related]
11. Micelle-bound conformation of a hairpin-forming peptide: combined NMR and molecular dynamics study. Dixon AM; Venable RM; Pastor RW; Bull TE Biopolymers; 2002 Nov; 65(4):284-98. PubMed ID: 12382289 [TBL] [Abstract][Full Text] [Related]
12. Structural similarities of micelle-bound peptide YY (PYY) and neuropeptide Y (NPY) are related to their affinity profiles at the Y receptors. Lerch M; Mayrhofer M; Zerbe O J Mol Biol; 2004 Jun; 339(5):1153-68. PubMed ID: 15178255 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional structure of neuropeptide k bound to dodecylphosphocholine micelles. Dike A; Cowsik SM Biochemistry; 2006 Mar; 45(9):2994-3004. PubMed ID: 16503654 [TBL] [Abstract][Full Text] [Related]
14. Peripheral binding mode and penetration depth of cobra cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach. Huang WN; Sue SC; Wang DS; Wu PL; Wu WG Biochemistry; 2003 Jun; 42(24):7457-66. PubMed ID: 12809502 [TBL] [Abstract][Full Text] [Related]
15. Refined three-dimensional solution structure of a snake cardiotoxin: analysis of the side-chain organization suggests the existence of a possible phospholipid binding site. Gilquin B; Roumestand C; Zinn-Justin S; Ménez A; Toma F Biopolymers; 1993 Nov; 33(11):1659-75. PubMed ID: 8241426 [TBL] [Abstract][Full Text] [Related]
16. Cardiotoxin III from the Taiwan cobra (Naja naja atra). Determination of structure in solution and comparison with short neurotoxins. Bhaskaran R; Huang CC; Chang DK; Yu C J Mol Biol; 1994 Jan; 235(4):1291-301. PubMed ID: 8308891 [TBL] [Abstract][Full Text] [Related]
17. An NMR study of the interaction of cardiotoxin gamma from Naja nigricollis with perdeuterated dodecylphosphocholine micelles. Dauplais M; Neumann JM; Pinkasfeld S; Ménez A; Roumestand C Eur J Biochem; 1995 May; 230(1):213-20. PubMed ID: 7601102 [TBL] [Abstract][Full Text] [Related]
18. Micellar environments induce structuring of the N-terminal tail of the prion protein. Renner C; Fiori S; Fiorino F; Landgraf D; Deluca D; Mentler M; Grantner K; Parak FG; Kretzschmar H; Moroder L Biopolymers; 2004 Mar; 73(4):421-33. PubMed ID: 14991659 [TBL] [Abstract][Full Text] [Related]
19. Structures of heparin-derived tetrasaccharide bound to cobra cardiotoxins: heparin binding at a single protein site with diverse side chain interactions. Tjong SC; Chen TS; Huang WN; Wu WG Biochemistry; 2007 Sep; 46(35):9941-52. PubMed ID: 17685633 [TBL] [Abstract][Full Text] [Related]
20. The role of acidic amino acid residues in the structural stability of snake cardiotoxins. Chiang CM; Chang SL; Lin HJ; Wu WG Biochemistry; 1996 Jul; 35(28):9177-86. PubMed ID: 8703923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]