BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11114602)

  • 1. Effect of particle size of polymeric nanospheres on intravitreal kinetics.
    Sakurai E; Ozeki H; Kunou N; Ogura Y
    Ophthalmic Res; 2001; 33(1):31-6. PubMed ID: 11114602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delivery from episcleral exoplants.
    Pontes de Carvalho RA; Krausse ML; Murphree AL; Schmitt EE; Campochiaro PA; Maumenee IH
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4532-9. PubMed ID: 17003449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of vitreous liquefaction on the intravitreal distribution of sodium fluorescein, fluorescein dextran, and fluorescent microparticles.
    Tan LE; Orilla W; Hughes PM; Tsai S; Burke JA; Wilson CG
    Invest Ophthalmol Vis Sci; 2011 Feb; 52(2):1111-8. PubMed ID: 20881289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anterior chamber fluorescein kinetics compared with vitreous kinetics in normal subjects.
    Knudsen LL; Olsen T; Nielsen-Kudsk F
    Acta Ophthalmol Scand; 1998 Oct; 76(5):561-7. PubMed ID: 9826040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ocular fluorescein kinetics before and after vitrectomy on swine.
    Knudsen LL; Dissing T; Hansen MN; Nielsen-Kudsk F
    Graefes Arch Clin Exp Ophthalmol; 2001 Nov; 239(11):832-9. PubMed ID: 11789863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo ocular fluorophotometry: delivery of fluoresceinated dextrans via transscleral diffusion in rabbits.
    Berezovsky DE; Patel SR; McCarey BE; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7038-45. PubMed ID: 21791594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clearance of sodium fluorescein incorporated into microspheres from the vitreous after intravitreal injection.
    Khoobehi B; Stradtmann MO; Peyman GA; Aly OM
    Ophthalmic Surg; 1991 Mar; 22(3):175-80. PubMed ID: 2030905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anterior chamber and vitreous fluorescein kinetics in normal and diabetic subjects.
    Knudsen LL; Nielsen-Kudsk F
    Acta Ophthalmol Scand; 1998 Aug; 76(4):396-400. PubMed ID: 9716323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injection site and pharmacokinetics after intravitreal injection of immunoglobulin G.
    Miura Y; Uematsu M; Teshima M; Suzuma K; Kumagami T; Sasaki H; Kitaoka T
    J Ocul Pharmacol Ther; 2011 Feb; 27(1):35-41. PubMed ID: 21182428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microspheres of biodegradable polymers as a drug-delivery system in the vitreous.
    Moritera T; Ogura Y; Honda Y; Wada R; Hyon SH; Ikada Y
    Invest Ophthalmol Vis Sci; 1991 May; 32(6):1785-90. PubMed ID: 2032801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye.
    Patel SR; Berezovsky DE; McCarey BE; Zarnitsyn V; Edelhauser HF; Prausnitz MR
    Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):4433-41. PubMed ID: 22669719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitreous: a barrier to nonviral ocular gene therapy.
    Peeters L; Sanders NN; Braeckmans K; Boussery K; Van de Voorde J; De Smedt SC; Demeester J
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3553-61. PubMed ID: 16186333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of vitreous clearance and potential retinal toxicity of intravitreal lornoxicam (xefo).
    Diakonis VF; Tsourdou A; Tzatzarakis MN; Tsika C; Charisis S; Naoumidi I; Plainis S; Tsilimbaris MK
    J Ocul Pharmacol Ther; 2013 Sep; 29(7):627-32. PubMed ID: 23556534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocular pharmacokinetics in rabbits using a novel dual probe microdialysis technique.
    Macha S; Mitra AK
    Exp Eye Res; 2001 Mar; 72(3):289-99. PubMed ID: 11180978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive monitoring of intraocular pharmacokinetics of daunorubicin using fluorophotometry.
    Kizhakkethara I; Li X; el-Sayed S; Khoobehi B; Moshfeghi DM; Rahimy M; Peyman GA
    Int Ophthalmol; 1995-1996; 19(6):363-7. PubMed ID: 8970871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Intravitreal drug delivery by microspheres of biodegradable polymers].
    Moritera T; Ogura Y; Honda Y; Wada R; Hyon SH; Ikada Y
    Nippon Ganka Gakkai Zasshi; 1990 May; 94(5):508-13. PubMed ID: 2220493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative intravitreal pharmacokinetics in mouse as a step towards inter-species translation.
    Puranen J; Ranta VP; Ruponen M; Urtti A; Sadeghi A
    Exp Eye Res; 2023 Oct; 235():109638. PubMed ID: 37657528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative MR imaging study of intravitreal sustained release of VEGF in rabbits.
    Alikacem N; Yoshizawa T; Nelson KD; Wilson CA
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1561-9. PubMed ID: 10798677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of fluorescein glucuronide and its metabolism in vitreous fluorophotometry.
    Plehwe WE; Chahal PS; Fallon TJ; Cunningham JR; Neal MJ; Kohner EM
    Exp Eye Res; 1987 Feb; 44(2):209-15. PubMed ID: 3582508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of suprachoroidal drug delivery with subconjunctival and intravitreal routes using noninvasive fluorophotometry.
    Tyagi P; Kadam RS; Kompella UB
    PLoS One; 2012; 7(10):e48188. PubMed ID: 23118950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.