BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

621 related articles for article (PubMed ID: 11115086)

  • 21. Comparison of in vitro AGE formation between standard PD fluid and a novel bicarbonate/lactate formulation.
    Millar DJ; Holmes C; Faict D; Dawnay A
    Adv Perit Dial; 1998; 14():191-4. PubMed ID: 10649722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of advanced glycation end products and carbonyl compounds in patients with different conditions of oxidative stress.
    Lapolla A; Reitano R; Seraglia R; Sartore G; Ragazzi E; Traldi P
    Mol Nutr Food Res; 2005 Jul; 49(7):685-90. PubMed ID: 15926142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification of reactive carbonyl compounds in icodextrin-based peritoneal dialysis fluids by combined UHPLC-DAD and -MS/MS detection.
    Gensberger-Reigl S; Huppert J; Pischetsrieder M
    J Pharm Biomed Anal; 2016 Jan; 118():132-138. PubMed ID: 26540628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low glucose degradation product peritoneal dialysis regimen is associated with lower plasma EN-RAGE and HMGB-1 proinflammatory ligands of receptor for advanced glycation end products.
    Opatrna S; Popperlova A; Kalousová M; Zima T
    Ther Apher Dial; 2014 Jun; 18(3):309-16. PubMed ID: 24965297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Icodextrin metabolites in peritoneal dialysis.
    García-López E; Lindholm B
    Perit Dial Int; 2009; 29(4):370-6. PubMed ID: 19602601
    [No Abstract]   [Full Text] [Related]  

  • 26. The triggering of human peritoneal mesothelial cell apoptosis and oncosis by glucose and glycoxydation products.
    Boulanger E; Wautier MP; Gane P; Mariette C; Devuyst O; Wautier JL
    Nephrol Dial Transplant; 2004 Sep; 19(9):2208-16. PubMed ID: 15213320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycation and advanced glycation end-product formation with icodextrin and dextrose.
    Dawnay AB; Millar DJ
    Perit Dial Int; 1997; 17(1):52-8. PubMed ID: 9068023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose.
    Thornalley PJ; Langborg A; Minhas HS
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):109-16. PubMed ID: 10548540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictors of a favourable response to icodextrin in peritoneal dialysis patients with ultrafiltration failure.
    Wiggins KJ; Rumpsfeld M; Blizzard S; Johnson DW
    Nephrology (Carlton); 2005 Feb; 10(1):33-6. PubMed ID: 15705179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced 1,2-dicarbonyl compounds in bicarbonate/lactate-buffered peritoneal dialysis (PD) fluids and PD fluids based on glucose polymers or amino acids.
    Schalkwijk CG; ter Wee PM; Teerlink T
    Perit Dial Int; 2000; 20(6):796-8. PubMed ID: 11216581
    [No Abstract]   [Full Text] [Related]  

  • 31. Icodextrin: a review of its use in peritoneal dialysis.
    Frampton JE; Plosker GL
    Drugs; 2003; 63(19):2079-105. PubMed ID: 12962523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of icodextrin on plasma and dialysate levels of N(epsilon)-(carboxymethyl)lysine and N(epsilon)-(carboxyethyl)lysine.
    Konings CJ; Schalkwijk CG; van der Sande FM; Leunissen KM; Kooman JP
    Perit Dial Int; 2005; 25(6):591-5. PubMed ID: 16411527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of high and low molecular weight molecules of icodextrin in plasma and dialysate, using gel filtration chromatography, in peritoneal dialysis patients.
    García-López E; Anderstam B; Heimbürger O; Amici G; Werynski A; Lindholm B
    Perit Dial Int; 2005; 25(2):181-91. PubMed ID: 15796147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3,4-dideoxyglucosone-3-ene in peritoneal dialysis fluids infused into the peritoneal cavity cannot be found in plasma.
    Erixon M; Wieslander A; Lindén T; Carlsson O; Jönsson JA; Simonsen O; Kjellstrand P
    Perit Dial Int; 2009 Feb; 29 Suppl 2():S28-31. PubMed ID: 19270226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Icodextrin re-absorption varies with age in children on automated peritoneal dialysis.
    Dart A; Feber J; Wong H; Filler G
    Pediatr Nephrol; 2005 May; 20(5):683-5. PubMed ID: 15719251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pharmacokinetics of icodextrin in peritoneal dialysis patients.
    Moberly JB; Mujais S; Gehr T; Hamburger R; Sprague S; Kucharski A; Reynolds R; Ogrinc F; Martis L; Wolfson M
    Kidney Int Suppl; 2002 Oct; (81):S23-33. PubMed ID: 12230479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PD fluids contain high concentrations of cytotoxic GDPs directly after sterilization.
    Erixon M; Lindén T; Kjellstrand P; Carlsson O; Ernebrant M; Forsbäck G; Wieslander A; Jönsson JA
    Perit Dial Int; 2004; 24(4):392-8. PubMed ID: 15335155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Early and advanced glycosylation end products. Kinetics of formation and clearance in peritoneal dialysis.
    Friedlander MA; Wu YC; Elgawish A; Monnier VM
    J Clin Invest; 1996 Feb; 97(3):728-35. PubMed ID: 8609229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyridoxamine improves functional, structural, and biochemical alterations of peritoneal membranes in uremic peritoneal dialysis rats.
    Kakuta T; Tanaka R; Satoh Y; Izuhara Y; Inagi R; Nangaku M; Saito A; Miyata T
    Kidney Int; 2005 Sep; 68(3):1326-36. PubMed ID: 16105068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical and physiological relevance of glucose degradation products in peritoneal dialysis.
    Mittelmaier S; Niwa T; Pischetsrieder M
    J Ren Nutr; 2012 Jan; 22(1):181-5. PubMed ID: 22200439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.