BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 11115368)

  • 1. Mitochondrial calcium transport: mechanisms and functions.
    Gunter TE; Buntinas L; Sparagna G; Eliseev R; Gunter K
    Cell Calcium; 2000; 28(5-6):285-96. PubMed ID: 11115368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake of calcium by mitochondria: transport and possible function.
    Gunter TE; Gunter KK
    IUBMB Life; 2001; 52(3-5):197-204. PubMed ID: 11798033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial calcium channels.
    Hoppe UC
    FEBS Lett; 2010 May; 584(10):1975-81. PubMed ID: 20388514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined modulation of the mitochondrial ATP-dependent potassium channel and the permeability transition pore causes prolongation of the biphasic calcium dynamics.
    Dahlem YA; Wolf G; Siemen D; Horn TF
    Cell Calcium; 2006 May; 39(5):387-400. PubMed ID: 16513166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of NH4Cl-induced systemic metabolic acidosis on kidney mitochondrial coupling and calcium transport in rats.
    Bento LM; Fagian MM; Vercesi AE; Gontijo JA
    Nephrol Dial Transplant; 2007 Oct; 22(10):2817-23. PubMed ID: 17556421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium and mitochondria.
    Gunter TE; Yule DI; Gunter KK; Eliseev RA; Salter JD
    FEBS Lett; 2004 Jun; 567(1):96-102. PubMed ID: 15165900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tale of two mitochondrial channels, MAC and PTP, in apoptosis.
    Kinnally KW; Antonsson B
    Apoptosis; 2007 May; 12(5):857-68. PubMed ID: 17294079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blockade of calcium influx through L-type calcium channels attenuates mitochondrial injury and apoptosis in hypoxic renal tubular cells.
    Tanaka T; Nangaku M; Miyata T; Inagi R; Ohse T; Ingelfinger JR; Fujita T
    J Am Soc Nephrol; 2004 Sep; 15(9):2320-33. PubMed ID: 15339981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress caused by mitochondrial calcium overload.
    Peng TI; Jou MJ
    Ann N Y Acad Sci; 2010 Jul; 1201():183-8. PubMed ID: 20649555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial cytochrome c release is caspase-dependent and does not involve mitochondrial permeability transition in didemnin B-induced apoptosis.
    Grubb DR; Ly JD; Vaillant F; Johnson KL; Lawen A
    Oncogene; 2001 Jul; 20(30):4085-94. PubMed ID: 11494136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial calcium transport in the heart: physiological and pathological roles.
    Griffiths EJ
    J Mol Cell Cardiol; 2009 Jun; 46(6):789-803. PubMed ID: 19285504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mitochondrial Ca2+ transport and regulation of cellular metabolism].
    Liang WY; Yang ZC; Huang YS
    Sheng Li Ke Xue Jin Zhan; 2000 Oct; 31(4):357-60. PubMed ID: 11372431
    [No Abstract]   [Full Text] [Related]  

  • 13. SLP-2 negatively modulates mitochondrial sodium-calcium exchange.
    Da Cruz S; De Marchi U; Frieden M; Parone PA; Martinou JC; Demaurex N
    Cell Calcium; 2010 Jan; 47(1):11-8. PubMed ID: 19944461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter.
    Ben-Hail D; Palty R; Shoshan-Barmatz V
    Cold Spring Harb Protoc; 2014 Feb; 2014(2):161-6. PubMed ID: 24492769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death.
    Azoulay-Zohar H; Israelson A; Abu-Hamad S; Shoshan-Barmatz V
    Biochem J; 2004 Jan; 377(Pt 2):347-55. PubMed ID: 14561215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria and Ca(2+)in cell physiology and pathophysiology.
    Duchen MR
    Cell Calcium; 2000; 28(5-6):339-48. PubMed ID: 11115373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological investigation of mitochondrial ca(2+) transport in central neurons: studies with CGP-37157, an inhibitor of the mitochondrial Na(+)-Ca(2+) exchanger.
    Scanlon JM; Brocard JB; Stout AK; Reynolds IJ
    Cell Calcium; 2000; 28(5-6):317-27. PubMed ID: 11115371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Relese of Ca2+ from mitochondria after mitochondrial membrane depolarisation].
    Akopova OV; Sagach VF
    Ukr Biokhim Zh (1999); 2005; 77(5):62-9. PubMed ID: 16846072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manganese and calcium transport in mitochondria: implications for manganese toxicity.
    Gavin CE; Gunter KK; Gunter TE
    Neurotoxicology; 1999; 20(2-3):445-53. PubMed ID: 10385903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NHE-1 inhibition-induced cardioprotection against ischaemia/reperfusion is associated with attenuation of the mitochondrial permeability transition.
    Javadov S; Choi A; Rajapurohitam V; Zeidan A; Basnakian AG; Karmazyn M
    Cardiovasc Res; 2008 Jan; 77(2):416-24. PubMed ID: 18006455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.