BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 11115373)

  • 1. Mitochondria and Ca(2+)in cell physiology and pathophysiology.
    Duchen MR
    Cell Calcium; 2000; 28(5-6):339-48. PubMed ID: 11115373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes.
    Ruiz-Meana M; Abellán A; Miró-Casas E; Garcia-Dorado D
    Basic Res Cardiol; 2007 Nov; 102(6):542-52. PubMed ID: 17891523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion.
    Ruiz-Meana M; Garcia-Dorado D; Miró-Casas E; Abellán A; Soler-Soler J
    Cardiovasc Res; 2006 Sep; 71(4):715-24. PubMed ID: 16860295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial defects and dysfunction in calcium regulation in glaucomatous trabecular meshwork cells.
    He Y; Ge J; Tombran-Tink J
    Invest Ophthalmol Vis Sci; 2008 Nov; 49(11):4912-22. PubMed ID: 18614807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death?
    Sullivan PG; Rabchevsky AG; Waldmeier PC; Springer JE
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):231-9. PubMed ID: 15573402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium and mitochondria.
    Gunter TE; Yule DI; Gunter KK; Eliseev RA; Salter JD
    FEBS Lett; 2004 Jun; 567(1):96-102. PubMed ID: 15165900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Aging-related increase of sensitivity of the mitochondrial permeability transition pore to inductors in the rat heart].
    Sahach VF; Vavilova HL; Strutyns'ka NA; Rudyk OV
    Fiziol Zh (1994); 2004; 50(2):49-63. PubMed ID: 15174206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The SR-mitochondria interaction: a new player in cardiac pathophysiology.
    Ruiz-Meana M; Fernandez-Sanz C; Garcia-Dorado D
    Cardiovasc Res; 2010 Oct; 88(1):30-9. PubMed ID: 20615915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased expression and intramitochondrial translocation of cyclophilin-D associates with increased vulnerability of the permeability transition pore to stress-induced opening during compensated ventricular hypertrophy.
    Matas J; Young NT; Bourcier-Lucas C; Ascah A; Marcil M; Deschepper CF; Burelle Y
    J Mol Cell Cardiol; 2009 Mar; 46(3):420-30. PubMed ID: 19094991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signalling via the reperfusion injury signalling kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection.
    Davidson SM; Hausenloy D; Duchen MR; Yellon DM
    Int J Biochem Cell Biol; 2006 Mar; 38(3):414-9. PubMed ID: 16280253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial calcium transport: mechanisms and functions.
    Gunter TE; Buntinas L; Sparagna G; Eliseev R; Gunter K
    Cell Calcium; 2000; 28(5-6):285-96. PubMed ID: 11115368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals.
    Hajnóczky G; Csordás G; Madesh M; Pacher P
    Cell Calcium; 2000; 28(5-6):349-63. PubMed ID: 11115374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined modulation of the mitochondrial ATP-dependent potassium channel and the permeability transition pore causes prolongation of the biphasic calcium dynamics.
    Dahlem YA; Wolf G; Siemen D; Horn TF
    Cell Calcium; 2006 May; 39(5):387-400. PubMed ID: 16513166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blockade of calcium influx through L-type calcium channels attenuates mitochondrial injury and apoptosis in hypoxic renal tubular cells.
    Tanaka T; Nangaku M; Miyata T; Inagi R; Ohse T; Ingelfinger JR; Fujita T
    J Am Soc Nephrol; 2004 Sep; 15(9):2320-33. PubMed ID: 15339981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain.
    Kaur P; Radotra B; Minz RW; Gill KD
    Neurotoxicology; 2007 Nov; 28(6):1208-19. PubMed ID: 17850875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of alpha-ketoglutarate dehydrogenase complex promotes cytochrome c release from mitochondria, caspase-3 activation, and necrotic cell death.
    Huang HM; Ou HC; Xu H; Chen HL; Fowler C; Gibson GE
    J Neurosci Res; 2003 Oct; 74(2):309-17. PubMed ID: 14515360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter.
    Ben-Hail D; Palty R; Shoshan-Barmatz V
    Cold Spring Harb Protoc; 2014 Feb; 2014(2):161-6. PubMed ID: 24492769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes.
    Krumschnabel G; Manzl C; Berger C; Hofer B
    Toxicol Appl Pharmacol; 2005 Nov; 209(1):62-73. PubMed ID: 15882883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria and calcium: from cell signalling to cell death.
    Duchen MR
    J Physiol; 2000 Nov; 529 Pt 1(Pt 1):57-68. PubMed ID: 11080251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bradykinin enhances reactive oxygen species generation, mitochondrial injury, and cell death induced by ATP depletion--a role of the phospholipase C-Ca(2+) pathway.
    Chiang WC; Chen YM; Lin SL; Wu KD; Tsai TJ
    Free Radic Biol Med; 2007 Sep; 43(5):702-10. PubMed ID: 17664134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.