BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 11115556)

  • 21. The translational factor eIF3f: the ambivalent eIF3 subunit.
    Marchione R; Leibovitch SA; Lenormand JL
    Cell Mol Life Sci; 2013 Oct; 70(19):3603-16. PubMed ID: 23354061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Translational control in cancer etiology.
    Ruggero D
    Cold Spring Harb Perspect Biol; 2013 Feb; 5(2):. PubMed ID: 22767671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA interference-mediated silencing of eukaryotic translation initiation factor 3, subunit B (EIF3B) gene expression inhibits proliferation of colon cancer cells.
    Wang Z; Chen J; Sun J; Cui Z; Wu H
    World J Surg Oncol; 2012 Jun; 10():119. PubMed ID: 22734884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. INT6/EIF3E interacts with ATM and is required for proper execution of the DNA damage response in human cells.
    Morris C; Tomimatsu N; Richard DJ; Cluet D; Burma S; Khanna KK; Jalinot P
    Cancer Res; 2012 Apr; 72(8):2006-16. PubMed ID: 22508697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The tumor suppressive role of eIF3f and its function in translation inhibition and rRNA degradation.
    Wen F; Zhou R; Shen A; Choi A; Uribe D; Shi J
    PLoS One; 2012; 7(3):e34194. PubMed ID: 22457825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of truncated eukaryotic initiation factor 3e (eIF3e) resulting from integration of mouse mammary tumor virus (MMTV) causes a shift from cap-dependent to cap-independent translation.
    Chiluiza D; Bargo S; Callahan R; Rhoads RE
    J Biol Chem; 2011 Sep; 286(36):31288-96. PubMed ID: 21737453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cancerous translation apparatus.
    Stumpf CR; Ruggero D
    Curr Opin Genet Dev; 2011 Aug; 21(4):474-83. PubMed ID: 21543223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Int6 regulates both proteasomal degradation and translation initiation and is critical for proper formation of acini by human mammary epithelium.
    Suo J; Snider SJ; Mills GB; Creighton CJ; Chen AC; Schiff R; Lloyd RE; Chang EC
    Oncogene; 2011 Feb; 30(6):724-36. PubMed ID: 20890303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Translational control in cancer.
    Silvera D; Formenti SC; Schneider RJ
    Nat Rev Cancer; 2010 Apr; 10(4):254-66. PubMed ID: 20332778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Int6 and Moe1 interact with Cdc48 to regulate ERAD and proper chromosome segregation.
    Otero JH; Suo J; Gordon C; Chang EC
    Cell Cycle; 2010 Jan; 9(1):147-61. PubMed ID: 20016281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of a putative protein profile associated with tamoxifen therapy resistance in breast cancer.
    Umar A; Kang H; Timmermans AM; Look MP; Meijer-van Gelder ME; den Bakker MA; Jaitly N; Martens JW; Luider TM; Foekens JA; Pasa-Tolić L
    Mol Cell Proteomics; 2009 Jun; 8(6):1278-94. PubMed ID: 19329653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation.
    Ding XC; Slack FJ; Grosshans H
    Cell Cycle; 2008 Oct; 7(19):3083-90. PubMed ID: 18818519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Common integration sites for MMTV in viral induced mouse mammary tumors.
    Callahan R; Smith GH
    J Mammary Gland Biol Neoplasia; 2008 Sep; 13(3):309-21. PubMed ID: 18709449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of the eukaryotic initiation factor 3f in melanoma.
    Doldan A; Chandramouli A; Shanas R; Bhattacharyya A; Leong SP; Nelson MA; Shi J
    Mol Carcinog; 2008 Oct; 47(10):806-13. PubMed ID: 18381585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of the eukaryotic initiation factor 3f in pancreatic cancer.
    Doldan A; Chandramouli A; Shanas R; Bhattacharyya A; Cunningham JT; Nelson MA; Shi J
    Mol Carcinog; 2008 Mar; 47(3):235-44. PubMed ID: 17918192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The INT6 cancer gene and MEK signaling pathways converge during zebrafish development.
    Grzmil M; Whiting D; Maule J; Anastasaki C; Amatruda JF; Kelsh RN; Norbury CJ; Patton EE
    PLoS One; 2007 Sep; 2(9):e959. PubMed ID: 17895999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The tumor suppressor eIF3e mediates calcium-dependent internalization of the L-type calcium channel CaV1.2.
    Green EM; Barrett CF; Bultynck G; Shamah SM; Dolmetsch RE
    Neuron; 2007 Aug; 55(4):615-32. PubMed ID: 17698014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of truncated Int6/eIF3e in mammary alveolar epithelium leads to persistent hyperplasia and tumorigenesis.
    Mack DL; Boulanger CA; Callahan R; Smith GH
    Breast Cancer Res; 2007; 9(4):R42. PubMed ID: 17626637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit.
    LeFebvre AK; Korneeva NL; Trutschl M; Cvek U; Duzan RD; Bradley CA; Hershey JW; Rhoads RE
    J Biol Chem; 2006 Aug; 281(32):22917-32. PubMed ID: 16766523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes.
    Zhou C; Arslan F; Wee S; Krishnan S; Ivanov AR; Oliva A; Leatherwood J; Wolf DA
    BMC Biol; 2005 May; 3():14. PubMed ID: 15904532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.