These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 11115894)
1. Analysis of phosphate acquisition efficiency in different Arabidopsis accessions. Narang RA; Bruene A; Altmann T Plant Physiol; 2000 Dec; 124(4):1786-99. PubMed ID: 11115894 [TBL] [Abstract][Full Text] [Related]
2. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics. Akhtar MS; Oki Y; Adachi T J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224 [TBL] [Abstract][Full Text] [Related]
3. Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana. De Pessemier J; Chardon F; Juraniec M; Delaplace P; Hermans C Mech Dev; 2013 Jan; 130(1):45-53. PubMed ID: 22683348 [TBL] [Abstract][Full Text] [Related]
4. Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana. Stetter MG; Schmid K; Ludewig U PLoS One; 2015; 10(3):e0120604. PubMed ID: 25781967 [TBL] [Abstract][Full Text] [Related]
5. Regulation of length and density of Arabidopsis root hairs by ammonium and nitrate. Vatter T; Neuhäuser B; Stetter M; Ludewig U J Plant Res; 2015 Sep; 128(5):839-48. PubMed ID: 26008190 [TBL] [Abstract][Full Text] [Related]
6. Molecular basis of differential nitrogen use efficiencies and nitrogen source preferences in contrasting Arabidopsis accessions. Menz J; Range T; Trini J; Ludewig U; Neuhäuser B Sci Rep; 2018 Feb; 8(1):3373. PubMed ID: 29463824 [TBL] [Abstract][Full Text] [Related]
7. SRPP, a Cell Wall Protein is Involved in Development and Protection of Seeds and Root Hairs in Arabidopsis thaliana. Tanaka N; Uno H; Okuda S; Gunji S; Ferjani A; Aoyama T; Maeshima M Plant Cell Physiol; 2017 Apr; 58(4):760-769. PubMed ID: 28138059 [TBL] [Abstract][Full Text] [Related]
8. Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. Rus A; Baxter I; Muthukumar B; Gustin J; Lahner B; Yakubova E; Salt DE PLoS Genet; 2006 Dec; 2(12):e210. PubMed ID: 17140289 [TBL] [Abstract][Full Text] [Related]
9. Genetic variations of cell wall digestibility related traits in floral stems of Arabidopsis thaliana accessions as a basis for the improvement of the feeding value in maize and forage plants. Barrière Y; Denoue D; Briand M; Simon M; Jouanin L; Durand-Tardif M Theor Appl Genet; 2006 Jun; 113(1):163-75. PubMed ID: 16783597 [TBL] [Abstract][Full Text] [Related]
10. Arabidopsis PHOSPHATE TRANSPORTER1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate. Lapis-Gaza HR; Jost R; Finnegan PM BMC Plant Biol; 2014 Nov; 14():334. PubMed ID: 25428623 [TBL] [Abstract][Full Text] [Related]
11. AAP1 transports uncharged amino acids into roots of Arabidopsis. Lee YH; Foster J; Chen J; Voll LM; Weber AP; Tegeder M Plant J; 2007 Apr; 50(2):305-19. PubMed ID: 17419840 [TBL] [Abstract][Full Text] [Related]
12. Aluminium-phosphate interactions in the rhizosphere of two bean species: Phaseolus lunatus L. and Phaseolus vulgaris L. Mimmo T; Ghizzi M; Cesco S; Tomasi N; Pinton R; Puschenreiter M J Sci Food Agric; 2013 Dec; 93(15):3891-6. PubMed ID: 24037763 [TBL] [Abstract][Full Text] [Related]
13. Carboxylate composition of root exudates does not relate consistently to a crop species' ability to use phosphorus from aluminium, iron or calcium phosphate sources. Pearse SJ; Veneklaas EJ; Cawthray G; Bolland MD; Lambers H New Phytol; 2007; 173(1):181-90. PubMed ID: 17176404 [TBL] [Abstract][Full Text] [Related]
14. Natural variation of submergence tolerance among Arabidopsis thaliana accessions. Vashisht D; Hesselink A; Pierik R; Ammerlaan JM; Bailey-Serres J; Visser EJ; Pedersen O; van Zanten M; Vreugdenhil D; Jamar DC; Voesenek LA; Sasidharan R New Phytol; 2011 Apr; 190(2):299-310. PubMed ID: 21108648 [TBL] [Abstract][Full Text] [Related]
15. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Yan F; Zhu Y; Müller C; Zörb C; Schubert S Plant Physiol; 2002 May; 129(1):50-63. PubMed ID: 12011337 [TBL] [Abstract][Full Text] [Related]
16. Phosphatidylinositol phosphate 5-kinase genes respond to phosphate deficiency for root hair elongation in Arabidopsis thaliana. Wada Y; Kusano H; Tsuge T; Aoyama T Plant J; 2015 Feb; 81(3):426-37. PubMed ID: 25477067 [TBL] [Abstract][Full Text] [Related]
17. Diversity analysis of the response to Zn within the Arabidopsis thaliana species revealed a low contribution of Zn translocation to Zn tolerance and a new role for Zn in lateral root development. Richard O; Pineau C; Loubet S; Chalies C; Vile D; Marquès L; Berthomieu P Plant Cell Environ; 2011 Jul; 34(7):1065-78. PubMed ID: 21410476 [TBL] [Abstract][Full Text] [Related]
18. Comparative expression profiling reveals a role of the root apoplast in local phosphate response. Hoehenwarter W; Mönchgesang S; Neumann S; Majovsky P; Abel S; Müller J BMC Plant Biol; 2016 Apr; 16():106. PubMed ID: 27121119 [TBL] [Abstract][Full Text] [Related]
20. The paralogous R3 MYB proteins CAPRICE, TRIPTYCHON and ENHANCER OF TRY AND CPC1 play pleiotropic and partly non-redundant roles in the phosphate starvation response of Arabidopsis roots. Chen CY; Schmidt W J Exp Bot; 2015 Aug; 66(15):4821-34. PubMed ID: 26022254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]