These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11116914)

  • 21. [Increase in the ecological danger upon the use of biocides for fighting corrosion induced by microorganisms].
    Zhigletsova SK; Rodin VB; Kobelev VS; Akimova NA; Aleksandrova NV; Rasulova GE; Mironova RI; Noskova VP; Kholodenko VP
    Prikl Biokhim Mikrobiol; 2000; 36(6):694-700. PubMed ID: 11116915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Evaluation of molybdate and nitrate on sulphate-reducing bacteria related to corrosion processes in industrial systems].
    Torrado Rincón JR; Calixto Gómez DM; Sarmiento Caraballo AE; Panqueva Alvarez JH
    Rev Argent Microbiol; 2008; 40(1):52-62. PubMed ID: 18669055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron corrosion by novel anaerobic microorganisms.
    Dinh HT; Kuever J; Mussmann M; Hassel AW; Stratmann M; Widdel F
    Nature; 2004 Feb; 427(6977):829-32. PubMed ID: 14985759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Corrosion of pipe steel samples and conjugated conversion of sulfur compounds by thiobacteria Halothiobacillus neapolitanus DSM 15147].
    Vatsurina AV; Esikova TZ; Kholodenko VP; Vaĭnshteĭn MB; Dubkova VI
    Prikl Biokhim Mikrobiol; 2005; 41(5):564-7. PubMed ID: 16240657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline.
    Jan-Roblero J; Romero JM; Amaya M; Le Borgne S
    Appl Microbiol Biotechnol; 2004 Jun; 64(6):862-7. PubMed ID: 15107951
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Stages of biofilm formation by sulfate-reducing bacteria].
    Asaulenko LH; Purishch LM; Kozlova IP
    Mikrobiol Z; 2004; 66(3):72-9. PubMed ID: 15456221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Mechanisms of microbial corrosion on petrous materials].
    Gómez-Alarcón G; de la Torre MA
    Microbiologia; 1994; 10(1-2):111-20. PubMed ID: 7946114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.
    Yuan SJ; Pehkonen SO
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cathodic protection system for underground M.S. pipeline of watersupply project.
    Patil VD; Phulari PS
    Indian J Environ Health; 2003 Jan; 45(1):11-4. PubMed ID: 14723277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial benthic community composition in the Baltic Sea in selected chemical and conventional weapons dump sites affected by munition corrosion.
    Cybulska K; Łońska E; Fabisiak J
    Sci Total Environ; 2020 Mar; 709():136112. PubMed ID: 31884294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The relationship between the surface composition and electrical properties of corrosion films formed on carbon steel in alkaline sour medium: an XPS and EIS study.
    Galicia P; Batina N; González I
    J Phys Chem B; 2006 Jul; 110(29):14398-405. PubMed ID: 16854148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial iron respiration: impacts on corrosion processes.
    Lee AK; Newman DK
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):134-9. PubMed ID: 12734693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbiologically influenced corrosion in petroleum product pipelines--a review.
    Muthukumar N; Rajasekar A; Ponmariappan S; Mohanan S; Maruthamuthu S; Muralidharan S; Subramanian P; Palaniswamy N; Raghavan M
    Indian J Exp Biol; 2003 Sep; 41(9):1012-22. PubMed ID: 15242294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy.
    Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S
    Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic Biodegradation of Alternative Fuels and Associated Biocorrosion of Carbon Steel in Marine Environments.
    Liang R; Aktas DF; Aydin E; Bonifay V; Sunner J; Suflita JM
    Environ Sci Technol; 2016 May; 50(9):4844-53. PubMed ID: 27058258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradation of corrosion inhibitors and their influence on petroleum product pipeline.
    Rajasekar A; Maruthamuthu S; Palaniswamy N; Rajendran A
    Microbiol Res; 2007; 162(4):355-68. PubMed ID: 16580829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microtensile strain on the corrosion performance of diamond-like carbon coating.
    Lee SH; Kim JG; Choi HW; Lee KR
    J Biomed Mater Res A; 2008 Jun; 85(3):808-14. PubMed ID: 17896779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the Physicochemical, Mechanical, and Electrochemical Parameters and Their Impact on the Internal and External SCC of Carbon Steel Pipelines.
    Manuel QL; Noé RJ; Rosario DYD; Ariadna AI; Vicente GF; Icoquih ZP
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33348736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biocorrosion produced by Thiobacillus-like microorganisms.
    López AI; Marín I; Amils R
    Microbiologia; 1994; 10(1-2):121-30. PubMed ID: 7946115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Microbial corrosion of dental alloy].
    Li L; Liu L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Oct; 21(5):864-6. PubMed ID: 15553877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.