These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 11117263)
1. Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Nakanishi H; Yamaguchi H; Sasakuma T; Nishizawa NK; Mori S Plant Mol Biol; 2000 Sep; 44(2):199-207. PubMed ID: 11117263 [TBL] [Abstract][Full Text] [Related]
2. In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2'-deoxymugineic acid to mugineic acid in transgenic rice. Kobayashi T; Nakanishi H; Takahashi M; Kawasaki S; Nishizawa NK; Mori S Planta; 2001 Apr; 212(5-6):864-71. PubMed ID: 11346963 [TBL] [Abstract][Full Text] [Related]
3. Expression of a gene specific for iron deficiency (Ids3) in the roots of Hordeum vulgare. Nakanishi H; Okumura N; Umehara Y; Nishizawa NK; Chino M; Mori S Plant Cell Physiol; 1993 Apr; 34(3):401-10. PubMed ID: 8019781 [TBL] [Abstract][Full Text] [Related]
4. A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare. Okumura N; Nishizawa NK; Umehara Y; Ohata T; Nakanishi H; Yamaguchi T; Chino M; Mori S Plant Mol Biol; 1994 Jul; 25(4):705-19. PubMed ID: 8061321 [TBL] [Abstract][Full Text] [Related]
5. Promoter analysis of iron-deficiency-inducible barley IDS3 gene in Arabidopsis and tobacco plants. Kobayashi T; Yoshihara T; Itai RN; Nakanishi H; Takahashi M; Mori S; Nishizawa NK Plant Physiol Biochem; 2007 May; 45(5):262-9. PubMed ID: 17467282 [TBL] [Abstract][Full Text] [Related]
6. Induced activity of adenine phosphoribosyltransferase (APRT) in iron-deficiency barley roots: a possible role for phytosiderophore production. Itai R; Suzuki K; Yamaguchi H; Nakanishi H; Nishizawa NK; Yoshimura E; Mori S J Exp Bot; 2000 Jul; 51(348):1179-88. PubMed ID: 10937693 [TBL] [Abstract][Full Text] [Related]
7. Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. Bashir K; Inoue H; Nagasaka S; Takahashi M; Nakanishi H; Mori S; Nishizawa NK J Biol Chem; 2006 Oct; 281(43):32395-402. PubMed ID: 16926158 [TBL] [Abstract][Full Text] [Related]
8. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Higuchi K; Suzuki K; Nakanishi H; Yamaguchi H; Nishizawa NK; Mori S Plant Physiol; 1999 Feb; 119(2):471-80. PubMed ID: 9952442 [TBL] [Abstract][Full Text] [Related]
9. cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Negishi T; Nakanishi H; Yazaki J; Kishimoto N; Fujii F; Shimbo K; Yamamoto K; Sakata K; Sasaki T; Kikuchi S; Mori S; Nishizawa NK Plant J; 2002 Apr; 30(1):83-94. PubMed ID: 11967095 [TBL] [Abstract][Full Text] [Related]
10. Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Takahashi M; Yamaguchi H; Nakanishi H; Shioiri T; Nishizawa NK; Mori S Plant Physiol; 1999 Nov; 121(3):947-56. PubMed ID: 10557244 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don. Vazquez-Flota F; De Carolis E; Alarco AM; De Luca V Plant Mol Biol; 1997 Aug; 34(6):935-48. PubMed ID: 9290645 [TBL] [Abstract][Full Text] [Related]
12. Organic Chemistry Research on the Mechanistic Elucidation of Iron Acquisition in Barley. Namba K; Murata Y Biol Pharm Bull; 2018; 41(10):1502-1507. PubMed ID: 30270318 [TBL] [Abstract][Full Text] [Related]
13. Determination of phytosiderophores by anion-exchange chromatography with pulsed amperometric detection. Weber G; Neumann G; Haake C; Römheld V J Chromatogr A; 2001 Sep; 928(2):171-5. PubMed ID: 11587335 [TBL] [Abstract][Full Text] [Related]
14. Identification, expression analysis, and molecular modeling of Mathpal P; Kumar U; Kumar A; Kumar S; Malik S; Kumar N; Dhaliwal HS; Kumar S 3 Biotech; 2018 Apr; 8(4):219. PubMed ID: 29666780 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Suzuki M; Takahashi M; Tsukamoto T; Watanabe S; Matsuhashi S; Yazaki J; Kishimoto N; Kikuchi S; Nakanishi H; Mori S; Nishizawa NK Plant J; 2006 Oct; 48(1):85-97. PubMed ID: 16972867 [TBL] [Abstract][Full Text] [Related]
16. Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Bashir K; Nagasaka S; Itai RN; Kobayashi T; Takahashi M; Nakanishi H; Mori S; Nishizawa NK Plant Mol Biol; 2007 Oct; 65(3):277-84. PubMed ID: 17710555 [TBL] [Abstract][Full Text] [Related]
17. Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Kobayashi T; Nakayama Y; Itai RN; Nakanishi H; Yoshihara T; Mori S; Nishizawa NK Plant J; 2003 Dec; 36(6):780-93. PubMed ID: 14675444 [TBL] [Abstract][Full Text] [Related]
18. Cloning and mapping of a putative barley NADPH-dependent HC-toxin reductase. Han F; Kleinhofs A; Kilian A; Ullrich SE Mol Plant Microbe Interact; 1997 Mar; 10(2):234-9. PubMed ID: 9057330 [TBL] [Abstract][Full Text] [Related]
19. Time course analysis of gene expression over 24 hours in Fe-deficient barley roots. Nagasaka S; Takahashi M; Nakanishi-Itai R; Bashir K; Nakanishi H; Mori S; Nishizawa NK Plant Mol Biol; 2009 Mar; 69(5):621-31. PubMed ID: 19089316 [TBL] [Abstract][Full Text] [Related]
20. Toward mechanistic elucidation of iron acquisition in barley: efficient synthesis of mugineic acids and their transport activities. Namba K; Murata Y Chem Rec; 2010 Apr; 10(2):140-50. PubMed ID: 20354995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]