These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 11118147)
41. Vitamin D receptor displays DNA binding and transactivation as a heterodimer with the retinoid X receptor, but not with the thyroid hormone receptor. Thompson PD; Hsieh JC; Whitfield GK; Haussler CA; Jurutka PW; Galligan MA; Tillman JB; Spindler SR; Haussler MR J Cell Biochem; 1999 Dec; 75(3):462-80. PubMed ID: 10536369 [TBL] [Abstract][Full Text] [Related]
42. Modulation of retinoid signalling through NGF-induced nuclear export of NGFI-B. Katagiri Y; Takeda K; Yu ZX; Ferrans VJ; Ozato K; Guroff G Nat Cell Biol; 2000 Jul; 2(7):435-40. PubMed ID: 10878809 [TBL] [Abstract][Full Text] [Related]
43. Ligand occupancy is not required for vitamin D receptor and retinoid receptor-mediated transcriptional activation. Matkovits T; Christakos S Mol Endocrinol; 1995 Feb; 9(2):232-42. PubMed ID: 7776973 [TBL] [Abstract][Full Text] [Related]
44. Allosteric interaction of the 1alpha,25-dihydroxyvitamin D3 receptor and the retinoid X receptor on DNA. Kahlen JP; Carlberg C Nucleic Acids Res; 1997 Nov; 25(21):4307-13. PubMed ID: 9336462 [TBL] [Abstract][Full Text] [Related]
45. Retinoid-X receptor (RXR) differentially augments thyroid hormone response in cell lines as a function of the response element and endogenous RXR content. Hsu JH; Zavacki AM; Harney JW; Brent GA Endocrinology; 1995 Feb; 136(2):421-30. PubMed ID: 7835272 [TBL] [Abstract][Full Text] [Related]
46. Molecular cloning of xSRC-3, a novel transcription coactivator from Xenopus, that is related to AIB1, p/CIP, and TIF2. Kim HJ; Lee SK; Na SY; Choi HS; Lee JW Mol Endocrinol; 1998 Jul; 12(7):1038-47. PubMed ID: 9658407 [TBL] [Abstract][Full Text] [Related]
47. Vitamin D3- and retinoic acid-induced monocytic differentiation: interactions between the endogenous vitamin D3 receptor, retinoic acid receptors, and retinoid X receptors in U-937 cells. Botling J; Oberg F; Törmä H; Tuohimaa P; Bläuer M; Nilsson K Cell Growth Differ; 1996 Sep; 7(9):1239-49. PubMed ID: 8877104 [TBL] [Abstract][Full Text] [Related]
48. Role of RXR in neurite outgrowth induced by docosahexaenoic acid. Calderon F; Kim HY Prostaglandins Leukot Essent Fatty Acids; 2007; 77(5-6):227-32. PubMed ID: 18036800 [TBL] [Abstract][Full Text] [Related]
49. Retinoid X receptor activation is essential for docosahexaenoic acid protection of retina photoreceptors. German OL; Monaco S; Agnolazza DL; Rotstein NP; Politi LE J Lipid Res; 2013 Aug; 54(8):2236-2246. PubMed ID: 23723389 [TBL] [Abstract][Full Text] [Related]
50. Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Lengqvist J; Mata De Urquiza A; Bergman AC; Willson TM; Sjövall J; Perlmann T; Griffiths WJ Mol Cell Proteomics; 2004 Jul; 3(7):692-703. PubMed ID: 15073272 [TBL] [Abstract][Full Text] [Related]
51. Retinoid x receptor gamma is implicated in docosahexaenoic acid modulation of despair behaviors and working memory in mice. Wietrzych-Schindler M; Szyszka-Niagolov M; Ohta K; Endo Y; Pérez E; de Lera AR; Chambon P; Krezel W Biol Psychiatry; 2011 Apr; 69(8):788-94. PubMed ID: 21334601 [TBL] [Abstract][Full Text] [Related]
52. The retinoid X receptor and its ligands: versatile regulators of metabolic function, cell differentiation and cell death. Ahuja HS; Szanto A; Nagy L; Davies PJ J Biol Regul Homeost Agents; 2003; 17(1):29-45. PubMed ID: 12757020 [TBL] [Abstract][Full Text] [Related]
53. Omega-3 fatty acids in health and disease and in growth and development. Simopoulos AP Am J Clin Nutr; 1991 Sep; 54(3):438-63. PubMed ID: 1908631 [TBL] [Abstract][Full Text] [Related]
54. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Xu R; Zhang L; Pan H; Zhang Y Front Pharmacol; 2024; 15():1464655. PubMed ID: 39478961 [TBL] [Abstract][Full Text] [Related]
55. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Cao Y; Zhao LW; Chen ZX; Li SH Front Neurosci; 2024; 18():1430465. PubMed ID: 39323915 [TBL] [Abstract][Full Text] [Related]
56. Stem cells tightly regulate dead cell clearance to maintain tissue fitness. Stewart KS; Abdusselamoglu MD; Tierney MT; Gola A; Hur YH; Gonzales KAU; Yuan S; Bonny AR; Yang Y; Infarinato NR; Cowley CJ; Levorse JM; Pasolli HA; Ghosh S; Rothlin CV; Fuchs E Nature; 2024 Sep; 633(8029):407-416. PubMed ID: 39169186 [TBL] [Abstract][Full Text] [Related]
57. Nuclear Receptors and the Hidden Language of the Metabolome. Chen Y; Anderson MT; Payne N; Santori FR; Ivanova NB Cells; 2024 Jul; 13(15):. PubMed ID: 39120315 [TBL] [Abstract][Full Text] [Related]
58. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Loeffler DA Front Aging Neurosci; 2024; 16():1368200. PubMed ID: 38872626 [TBL] [Abstract][Full Text] [Related]
59. The retinoid X receptor has a critical role in synthetic rexinoid-induced increase in cellular all-trans-retinoic acid. Belyaeva OV; Klyuyeva AV; Vyas A; Berger WK; Halasz L; Yu J; Atigadda VR; Slay A; Goggans KR; Renfrow MB; Kane MA; Nagy L; Kedishvili NY PLoS One; 2024; 19(4):e0301447. PubMed ID: 38557762 [TBL] [Abstract][Full Text] [Related]
60. The Contribution of Hippocampal All-Trans Retinoic Acid (ATRA) Deficiency to Alzheimer's Disease: A Narrative Overview of ATRA-Dependent Gene Expression in Post-Mortem Hippocampal Tissue. Almaguer J; Hindle A; Lawrence JJ Antioxidants (Basel); 2023 Oct; 12(11):. PubMed ID: 38001775 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]