BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 11118218)

  • 41. [Investigation of the Dependence of Escherichia coli RNA Polymerase σ70-Subunit Structure on Ionic Strength by Molecular Dynamics Simulation Method].
    Tolstova AP; Dubrovin EV; Koroleva ON
    Biofizika; 2015; 60(6):1045-9. PubMed ID: 26841497
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of the sigma subunit in promoter recognition by RNA polymerase.
    Dombroski AJ; Walter WA; Gross CA
    Cell Mol Biol Res; 1993; 39(4):311-7. PubMed ID: 8312965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low concentrations of free hydrophobic amino acids disrupt the Escherichia coli RNA polymerase core-sigma(70) protein-protein interaction.
    Maitra A; Moreno J; Hernandez VJ
    Protein Expr Purif; 2002 Feb; 24(1):163-70. PubMed ID: 11812237
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assay of Escherichia coli RNA polymerase: sigma-core interactions.
    Gruber TM; Gross CA
    Methods Enzymol; 2003; 370():206-12. PubMed ID: 14712646
    [No Abstract]   [Full Text] [Related]  

  • 45. Competition among seven Escherichia coli sigma subunits: relative binding affinities to the core RNA polymerase.
    Maeda H; Fujita N; Ishihama A
    Nucleic Acids Res; 2000 Sep; 28(18):3497-503. PubMed ID: 10982868
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes.
    Vuthoori S; Bowers CW; McCracken A; Dombroski AJ; Hinton DM
    J Mol Biol; 2001 Jun; 309(3):561-72. PubMed ID: 11397080
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular analysis of activator engagement with RNA polymerase.
    Lambert LJ; Schirf V; Demeler B; Werner MH
    Methods Enzymol; 2003; 370():505-21. PubMed ID: 14712671
    [No Abstract]   [Full Text] [Related]  

  • 48. Region I modifies DNA-binding domain conformation of sigma 54 within the holoenzyme.
    Casaz P; Buck M
    J Mol Biol; 1999 Jan; 285(2):507-14. PubMed ID: 9878425
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conservation of sigma-core RNA polymerase proximity relationships between the enhancer-independent and enhancer-dependent sigma classes.
    Wigneshweraraj SR; Fujita N; Ishihama A; Buck M
    EMBO J; 2000 Jun; 19(12):3038-48. PubMed ID: 10856247
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isomerization of a binary sigma-promoter DNA complex by transcription activators.
    Cannon WV; Gallegos MT; Buck M
    Nat Struct Biol; 2000 Jul; 7(7):594-601. PubMed ID: 10876247
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The interaction between sigma70 and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation.
    Nickels BE; Garrity SJ; Mekler V; Minakhin L; Severinov K; Ebright RH; Hochschild A
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4488-93. PubMed ID: 15761057
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conformational transition of Escherichia coli RNA polymerase induced by the interaction of sigma subunit with core enzyme.
    Wu FY; Yarbrough LR; Wu CW
    Biochemistry; 1976 Jul; 15(15):3254-8. PubMed ID: 782516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sigma domain structure: one down, one to go.
    Chan CL; Lonetto MA; Gross CA
    Structure; 1996 Nov; 4(11):1235-8. PubMed ID: 8939761
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular anatomy of the beta' subunit of the E. coli RNA polymerase: identification of regions involved in polymerase assembly.
    Luo J; Sharif KA; Jin R; Fujita N; Ishihama A; Krakow JS
    Genes Cells; 1996 Sep; 1(9):819-27. PubMed ID: 9077436
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Homology modelling of RNA polymerase and associated transcription factors from Bacillus subtilis.
    MacDougall IJ; Lewis PJ; Griffith R
    J Mol Graph Model; 2005 Jan; 23(4):297-303. PubMed ID: 15670950
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low resolution structure of the sigma54 transcription factor revealed by X-ray solution scattering.
    Svergun DI; Malfois M; Koch MH; Wigneshweraraj SR; Buck M
    J Biol Chem; 2000 Feb; 275(6):4210-4. PubMed ID: 10660585
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conformational flexibility of bacterial RNA polymerase.
    Darst SA; Opalka N; Chacon P; Polyakov A; Richter C; Zhang G; Wriggers W
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4296-301. PubMed ID: 11904365
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recombinant Escherichia coli RNA polymerase: purification of individually overexpressed subunits and in vitro assembly.
    Borukhov S; Goldfarb A
    Protein Expr Purif; 1993 Dec; 4(6):503-11. PubMed ID: 8286946
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Influence of ionic strength on RNA-polymerase structure].
    Savochkina LP; Bibilashvili RSh
    Mol Biol (Mosk); 1979; 13(3):509-18. PubMed ID: 379612
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural mechanism for rifampicin inhibition of bacterial rna polymerase.
    Campbell EA; Korzheva N; Mustaev A; Murakami K; Nair S; Goldfarb A; Darst SA
    Cell; 2001 Mar; 104(6):901-12. PubMed ID: 11290327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.