These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 11118309)

  • 1. Amino acid residues conferring herbicide tolerance in tobacco acetolactate synthase.
    Chong CK; Choi JD
    Biochem Biophys Res Commun; 2000 Dec; 279(2):462-7. PubMed ID: 11118309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of lysine 219 and 255 residues in tobacco acetolactate synthase.
    Yoon TY; Chung SM; Chang SI; Yoon MY; Hahn TR; Choi JD
    Biochem Biophys Res Commun; 2002 Apr; 293(1):433-9. PubMed ID: 12054619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of histidine residues in tobacco acetolactate synthase.
    Oh KJ; Park EJ; Yoon MY; Han TR; Choi JD
    Biochem Biophys Res Commun; 2001 Apr; 282(5):1237-43. PubMed ID: 11302749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of tryptophanyl residues in tobacco acetolactate synthase.
    Chong CK; Shin HJ; Chang SI; Choi JD
    Biochem Biophys Res Commun; 1999 May; 259(1):136-40. PubMed ID: 10334929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional evaluation of three well-conserved serine residues in tobacco acetohydroxyacid synthase.
    Yoon MY; Gedi V; Kim J; Park Y; Kim DE; Park EH; Choi JD
    Biochimie; 2010 Jan; 92(1):65-70. PubMed ID: 19825392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid residues conferring herbicide resistance in tobacco acetohydroxy acid synthase.
    Jung SM; Le DT; Yoon SS; Yoon MY; Kim YT; Choi JD
    Biochem J; 2004 Oct; 383(Pt 1):53-61. PubMed ID: 15214847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of the quinoline-linked triazolopyrimidine analogues and their interactions with the recombinant tobacco acetolactate synthase.
    Namgoong SK; Lee HJ; Kim YS; Shin JH; Che JK; Jang DY; Kim GS; Yoo JW; Kang MK; Kil MW; Choi JD; Chang SI
    Biochem Biophys Res Commun; 1999 May; 258(3):797-801. PubMed ID: 10329466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of three well-conserved arginine residues in mediating the catalytic activity of tobacco acetohydroxy acid synthase.
    Le DT; Yoon MY; Kim YT; Choi JD
    J Biochem; 2005 Jul; 138(1):35-40. PubMed ID: 16046446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of conserved methionine residues in tobacco acetolactate synthase.
    Tien Le D; Yoon MY; Kim YT; Choi JD
    Biochem Biophys Res Commun; 2003 Jul; 306(4):1075-82. PubMed ID: 12821153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional role of cysteinyl residues in tobacco acetolactate synthase.
    Shin HJ; Chong CK; Chang SI; Choi JD
    Biochem Biophys Res Commun; 2000 May; 271(3):801-6. PubMed ID: 10814542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two consecutive aspartic acid residues conferring herbicide resistance in tobacco acetohydroxy acid synthase.
    Le DT; Yoon MY; Tae Kim Y; Choi JD
    Biochim Biophys Acta; 2005 May; 1749(1):103-12. PubMed ID: 15848141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acids conferring herbicide resistance in tobacco acetohydroxyacid synthase.
    Le DT; Choi JD; Tran LS
    GM Crops; 2010; 1(2):62-7. PubMed ID: 21865873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soluble overexpression in Escherichia coli, and purification and characterization of wild-type recombinant tobacco acetolactate synthase.
    Chang SI; Kang MK; Choi JD; Namgoong SK
    Biochem Biophys Res Commun; 1997 May; 234(3):549-53. PubMed ID: 9175749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of mutagenesis at serine 653 of Arabidopsis thaliana acetohydroxyacid synthase on the sensitivity to imidazolinone and sulfonylurea herbicides.
    Lee YT; Chang AK; Duggleby RG
    FEBS Lett; 1999 Jun; 452(3):341-5. PubMed ID: 10386618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of ALS genes in the polyploid species Schoenoplectus mucronatus and implications for resistance management.
    Scarabel L; Locascio A; Furini A; Sattin M; Varotto S
    Pest Manag Sci; 2010 Mar; 66(3):337-44. PubMed ID: 19921713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imidazolinone-tolerant crops: history, current status and future.
    Tan S; Evans RR; Dahmer ML; Singh BK; Shaner DL
    Pest Manag Sci; 2005 Mar; 61(3):246-57. PubMed ID: 15627242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amaranthus palmeri resistance and differential tolerance of Amaranthus palmeri and Amaranthus hybridus to ALS-inhibitor herbicides.
    Burgos NR; Kuk YI; Talbert RE
    Pest Manag Sci; 2001 May; 57(5):449-57. PubMed ID: 11374163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes.
    Yu Q; Nelson JK; Zheng MQ; Jackson M; Powles SB
    Pest Manag Sci; 2007 Sep; 63(9):918-27. PubMed ID: 17665369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum.
    Preston C; Powles SB
    Heredity (Edinb); 2002 Jan; 88(1):8-13. PubMed ID: 11813100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new amino acid substitution (Ala-205-Phe) in acetolactate synthase (ALS) confers broad spectrum resistance to ALS-inhibiting herbicides.
    Brosnan JT; Vargas JJ; Breeden GK; Grier L; Aponte RA; Tresch S; Laforest M
    Planta; 2016 Jan; 243(1):149-59. PubMed ID: 26353912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.