These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 11118602)

  • 1. Two-stage cultivation of recombinant Saccharomyces cerevisiae to enhance plasmid stability under non-selective conditions: experimental study and modeling.
    Gupta JC; Pandey G; Mukherjee KJ
    Enzyme Microb Technol; 2001 Jan; 28(1):89-99. PubMed ID: 11118602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability studies of recombinant Saccharomyces cerevisiae in the presence of varying selection pressure.
    Gupta JC; Mukherjee KJ
    Biotechnol Bioeng; 2002 Jun; 78(5):475-88. PubMed ID: 12115116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable maintenance of plasmid in continuous culture of yeast under non-selective conditions.
    Gupta JC; Mukherjee KJ
    J Biosci Bioeng; 2001; 92(4):317-23. PubMed ID: 16233104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel feeding strategy for enhanced plasmid stability and protein production in recombinant yeast fedbatch fermentation.
    Cheng C; Huang YL; Yang ST
    Biotechnol Bioeng; 1997 Oct; 56(1):23-31. PubMed ID: 18636606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of medium composition and nutrient limitation on loss of the recombinant plasmid pLG669-z and beta-galactosidase expression by Saccharomyces cerevisiae.
    O'Kennedy RD; Patching JW
    J Ind Microbiol Biotechnol; 1997 May; 18(5):319-25. PubMed ID: 9218361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media.
    Lange N; Steinbüchel A
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1611-22. PubMed ID: 21573686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of growth environment on recombinant plasmid stability in Saccharomyces cerevisiae grown in continuous culture.
    O'Kennedy R; Houghton CJ; Patching JW
    Appl Microbiol Biotechnol; 1995 Dec; 44(1-2):126-32. PubMed ID: 8579826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the medium composition and plasmid combination on the growth of recombinant Escherichia coli JM109 and on the production of the fusion protein EcoRI::SPA.
    Rhee JI; Bode J; Diaz-Ricci JC; Poock D; Weigel B; Kretzmer G; Schügler K
    J Biotechnol; 1997 Jun; 55(2):69-83. PubMed ID: 9232030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved protein synthesis and secretion through medium enrichment in a stable recombinant yeast strain.
    Wang Z; Da Silva NA
    Biotechnol Bioeng; 1993 Jun; 42(1):95-102. PubMed ID: 18609652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells.
    Kilonzo P; Margaritis A; Bergougnou M
    J Biotechnol; 2009 Aug; 143(1):60-8. PubMed ID: 19539672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmid instability kinetics in continuous culture of a recombinant Saccharomyces cerevisiae in airlift bioreactor.
    Zhang Z; Scharer JM; Moo-Young M
    J Biotechnol; 1997 May; 55(1):31-41. PubMed ID: 9226960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of unstable recombinant Saccharomyces cerevisiae population growth in selective medium.
    Srienc F; Campbell JL; Bailey JE
    Biotechnol Bioeng; 1986 Jul; 28(7):996-1006. PubMed ID: 18555421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmid stability in recombinant Saccharomyces cerevisiae.
    Zhang Z; Moo-Young M; Chisti Y
    Biotechnol Adv; 1996; 14(4):401-35. PubMed ID: 14540156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for growth of Saccharomyces cerevisiae containing a recombinant plasmid in selective media.
    Sardonini CA; Dibiasio D
    Biotechnol Bioeng; 1987 Mar; 29(4):469-75. PubMed ID: 18576474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2].
    Shin CS; Hong MS; Bae CS; Lee J
    Biotechnol Prog; 1997; 13(3):249-57. PubMed ID: 9190075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of recombinant hirudin by high cell density fed-batch cultivations of a Saccharomyces cerevisiae strain: physiological considerations during the bioprocess design.
    Mendoza-Vega O; Hebert C; Brown SW
    J Biotechnol; 1994 Feb; 32(3):249-59. PubMed ID: 7764718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of a cloned gene in yeast grown in chemostat culture.
    Walmsley RM; Gardner DC; Oliver SG
    Mol Gen Genet; 1983; 192(3):361-5. PubMed ID: 6361487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of cloned gene product synthesis via autoselection in recombinant Saccharomyces cerevisiae.
    Napp SJ; Da Silva NA
    Biotechnol Bioeng; 1993 Apr; 41(8):801-10. PubMed ID: 18609624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and secretion patterns of cloned glucoamylase in plasmid-harboring and chromosome-integrated recombinant yeasts employing an SUC2 promoter.
    Cha HJ; Chae HJ; Choi SS; Yoo YJ
    Appl Biochem Biotechnol; 2000 May; 87(2):81-93. PubMed ID: 10949689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.