BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11119157)

  • 1. Detection and differentiation between mycotoxigenic and non-mycotoxigenic strains of two Fusarium spp. using volatile production profiles and hydrolytic enzymes.
    Keshri G; Magan N
    J Appl Microbiol; 2000 Nov; 89(5):825-33. PubMed ID: 11119157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of water activity on hydrolytic enzyme production by Fusarium moniliforme and Fusarium proliferatum during colonisation of maize.
    Marín S; Sanchis V; Ramos AJ; Magan N
    Int J Food Microbiol; 1998 Jul; 42(3):185-94. PubMed ID: 9728689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential for detection and discrimination between mycotoxigenic and non-toxigenic spoilage moulds using volatile production patterns: a review.
    Sahgal N; Needham R; Cabañes FJ; Magan N
    Food Addit Contam; 2007 Oct; 24(10):1161-8. PubMed ID: 17886189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of an electronic nose for the early detection and differentiation between spoilage fungi.
    Keshri G; Magan N; Voysey P
    Lett Appl Microbiol; 1998 Nov; 27(5):261-4. PubMed ID: 9830141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early detection of spoilage moulds in bread using volatile production patterns and quantitative enzyme assays.
    Keshri G; Voysey P; Magan N
    J Appl Microbiol; 2002; 92(1):165-72. PubMed ID: 11849341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Detection and Identification of Mycotoxigenic Fungi and Mycotoxins in Stored Wheat Grain.
    Sadhasivam S; Britzi M; Zakin V; Kostyukovsky M; Trostanetsky A; Quinn E; Sionov E
    Toxins (Basel); 2017 Sep; 9(10):. PubMed ID: 28946706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Detection of glycosidases in Pseudomonas of the fluorescent group: relation between serotype and glycosidase activities in P. aeruginosa].
    Hansen W; Yourassowsky E
    Ann Microbiol (Paris); 1983; 134B(3):411-9. PubMed ID: 6426362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production.
    Kim SH; Vujanovic V
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5257-72. PubMed ID: 27121573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycotoxins produced by Fusarium proliferatum and F. pseudonygamai on maize, sorghum and pearl millet grains in vitro.
    Vismer HF; Shephard GS; van der Westhuizen L; Mngqawa P; Bushula-Njah V; Leslie JF
    Int J Food Microbiol; 2019 May; 296():31-36. PubMed ID: 30826540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro evaluation of the activity of thiosemicarbazone derivatives against mycotoxigenic fungi affecting cereals.
    Degola F; Morcia C; Bisceglie F; Mussi F; Tumino G; Ghizzoni R; Pelosi G; Terzi V; Buschini A; Restivo FM; Lodi T
    Int J Food Microbiol; 2015 May; 200():104-11. PubMed ID: 25702884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycotoxin contamination of food in Europe: early detection and prevention strategies.
    Magan N
    Mycopathologia; 2006 Sep; 162(3):245-53. PubMed ID: 16944291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-specific optical genosensors for the detection of mycotoxigenic Fusarium fungi in food samples.
    Peltomaa R; Vaghini S; Patiño B; Benito-Peña E; Moreno-Bondi MC
    Anal Chim Acta; 2016 Sep; 935():231-8. PubMed ID: 27543032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-harvest control strategies: minimizing mycotoxins in the food chain.
    Magan N; Aldred D
    Int J Food Microbiol; 2007 Oct; 119(1-2):131-9. PubMed ID: 17764773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Direct detection of T-2- and HT-2-mycotoxins producers of fungi the genus Fusarium in food grain by PCR (report 2)].
    Minaeva LP; Korotkevich IuV; Zakharova LP; Sedova IB; Sheveleva SA
    Vopr Pitan; 2013; 82(4):48-54. PubMed ID: 24340932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal community, Fusarium head blight complex and secondary metabolites associated with malting barley grains harvested in Umbria, central Italy.
    Beccari G; Senatore MT; Tini F; Sulyok M; Covarelli L
    Int J Food Microbiol; 2018 May; 273():33-42. PubMed ID: 29574332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and Evaluation of New Antagonist Bacillus Strains for the Control of Pathogenic and Mycotoxigenic Fungi of Fig Orchards.
    Öztopuz Ö; Pekin G; Park RD; Eltem R
    Appl Biochem Biotechnol; 2018 Nov; 186(3):692-711. PubMed ID: 29721823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Characteristics of producing-fumonisin and dimorphic fungus of fusarium moniliforme].
    Wang Z; Liu X; Cong L; Li X; Tong Z; Cheng S; Ge S
    Zhonghua Yu Fang Yi Xue Za Zhi; 2000 Jan; 34(1):44-6. PubMed ID: 11860899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride.
    Naef A; Zesiger T; Défago G
    J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survey of fumonisin production by Fusarium isolated from cereals in Europe.
    Visconti A; Doko MB
    J AOAC Int; 1994; 77(2):546-50. PubMed ID: 8199488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infection by mycotoxigenic fungal species and mycotoxin contamination of maize grain in Umbria, central Italy.
    Covarelli L; Beccari G; Salvi S
    Food Chem Toxicol; 2011 Sep; 49(9):2365-9. PubMed ID: 21723360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.