BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11119647)

  • 1. The C-terminal domain of HPII catalase is a member of the type I glutamine amidotransferase superfamily.
    Horvath MM; Grishin NV
    Proteins; 2001 Feb; 42(2):230-6. PubMed ID: 11119647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the hinge loop linking the N- and C-terminal domains of the amidotransferase subunit of carbamoyl phosphate synthetase.
    Huang X; Raushel FM
    Arch Biochem Biophys; 2000 Aug; 380(1):174-80. PubMed ID: 10900147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the C-terminal domain of the catalase-peroxidase KatG from Escherichia coli.
    Carpena X; Melik-Adamyan W; Loewen PC; Fita I
    Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1824-32. PubMed ID: 15388929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-terminal domains of Escherichia coli topoisomerase I belong to the zinc-ribbon superfamily.
    Grishin NV
    J Mol Biol; 2000 Jun; 299(5):1165-77. PubMed ID: 10873443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily.
    Wrabl JO; Grishin NV
    J Mol Biol; 2001 Nov; 314(3):365-74. PubMed ID: 11846551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The emergence of catalytic and structural diversity within the beta-clip fold.
    Iyer LM; Aravind L
    Proteins; 2004 Jun; 55(4):977-91. PubMed ID: 15146494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the human GGA1 GAT domain.
    Zhu G; Zhai P; He X; Terzyan S; Zhang R; Joachimiak A; Tang J; Zhang XC
    Biochemistry; 2003 Jun; 42(21):6392-9. PubMed ID: 12767220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroperoxidase II of Escherichia coli exhibits enhanced resistance to proteolytic cleavage compared to other catalases.
    Chelikani P; Donald LJ; Duckworth HW; Loewen PC
    Biochemistry; 2003 May; 42(19):5729-35. PubMed ID: 12741830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The predicted secondary structure of the G-type glutamine amidotransferase is compatible with TIM-barrel topology.
    Niermann T; Kirschner K
    Protein Eng; 1995 Jun; 8(6):535-42. PubMed ID: 8532677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of catalase HPII from Escherichia coli.
    Bravo J; Verdaguer N; Tormo J; Betzel C; Switala J; Loewen PC; Fita I
    Structure; 1995 May; 3(5):491-502. PubMed ID: 7663946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational changes in ammonia-channeling glutamine amidotransferases.
    Mouilleron S; Golinelli-Pimpaneau B
    Curr Opin Struct Biol; 2007 Dec; 17(6):653-64. PubMed ID: 17951049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a novel bond between a histidine and the essential tyrosine in catalase HPII of Escherichia coli.
    Bravo J; Fita I; Ferrer JC; Ens W; Hillar A; Switala J; Loewen PC
    Protein Sci; 1997 May; 6(5):1016-23. PubMed ID: 9144772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamine amidotransferase activity of NAD+ synthetase from Mycobacterium tuberculosis depends on an amino-terminal nitrilase domain.
    Bellinzoni M; Buroni S; Pasca MR; Guglierame P; Arcesi F; De Rossi E; Riccardi G
    Res Microbiol; 2005 Mar; 156(2):173-7. PubMed ID: 15748981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the N-terminal domain of Escherichia coli glutamine synthetase adenylyltransferase.
    Xu Y; Zhang R; Joachimiak A; Carr PD; Huber T; Vasudevan SG; Ollis DL
    Structure; 2004 May; 12(5):861-9. PubMed ID: 15130478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural classification of thioredoxin-like fold proteins.
    Qi Y; Grishin NV
    Proteins; 2005 Feb; 58(2):376-88. PubMed ID: 15558583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory control of the amidotransferase domain of carbamoyl phosphate synthetase.
    Miles BW; Banzon JA; Raushel FM
    Biochemistry; 1998 Nov; 37(47):16773-9. PubMed ID: 9843448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do Th1 or Th2 sequence motifs exist in proteins? Identification of amphipatic immunomodulatory domains in Helicobacter pylori catalase.
    Guy B; Krell T; Sanchez V; Kennel A; Manin C; Sodoyer R
    Immunol Lett; 2005 Jan; 96(2):261-75. PubMed ID: 15585332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent evolution of the thiolase superfamily and chalcone synthase family.
    Jiang C; Kim SY; Suh DY
    Mol Phylogenet Evol; 2008 Dec; 49(3):691-701. PubMed ID: 18824113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of Myb DNA-binding domains.
    Hanaoka S; Nagadoi A; Yoshimura S; Aimoto S; Li B; de Lange T; Nishimura Y
    J Mol Biol; 2001 Sep; 312(1):167-75. PubMed ID: 11545594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.