These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11119649)

  • 1. Quantitative comparison of the ability of hydropathy scales to recognize surface beta-strands in proteins.
    Palliser CC; Parry DA
    Proteins; 2001 Feb; 42(2):243-55. PubMed ID: 11119649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of protein hydropathy predictions.
    Jääskeläinen S; Riikonen P; Salakoski T; Vihinen M
    Int J Data Min Bioinform; 2010; 4(6):735-54. PubMed ID: 21355504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface beta-strands in proteins: identification using an hydropathy technique.
    Palliser CC; MacArthur MW; Parry DA
    J Struct Biol; 2000 Oct; 132(1):63-71. PubMed ID: 11121307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BuildBeta--a system for automatically constructing beta sheets.
    Max N; Hu C; Kreylos O; Crivelli S
    Proteins; 2010 Feb; 78(3):559-74. PubMed ID: 19768785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary structure assignment that accurately reflects physical and evolutionary characteristics.
    Cubellis MV; Cailliez F; Lovell SC
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S8. PubMed ID: 16351757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational methods for protein secondary structure prediction using multiple sequence alignments.
    Heringa J
    Curr Protein Pept Sci; 2000 Nov; 1(3):273-301. PubMed ID: 12369910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using hydropathy features for function prediction of membrane proteins.
    Pánek J; Eidhammer I; Aasland R
    Mol Membr Biol; 2007; 24(4):304-12. PubMed ID: 17520486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProMate: a structure based prediction program to identify the location of protein-protein binding sites.
    Neuvirth H; Raz R; Schreiber G
    J Mol Biol; 2004 Apr; 338(1):181-99. PubMed ID: 15050833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins?
    Park Y; Helms V
    Biopolymers; 2006 Nov; 83(4):389-99. PubMed ID: 16838301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-sheet modeling by helical surfaces.
    Znamenskiy D; Le Tuan K; Poupon A; Chomilier J; Mornon JP
    Protein Eng; 2000 Jun; 13(6):407-12. PubMed ID: 10877851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A knowledge-based scale for amino acid membrane propensity.
    Punta M; Maritan A
    Proteins; 2003 Jan; 50(1):114-21. PubMed ID: 12471604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian models and algorithms for protein β-sheet prediction.
    Aydin Z; Altunbasak Y; Erdogan H
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(2):395-409. PubMed ID: 21233522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of gapped positions in multiple sequence alignments on secondary structure prediction methods.
    Simossis VA; Heringa J
    Comput Biol Chem; 2004 Dec; 28(5-6):351-66. PubMed ID: 15556476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel predictor for protein structural class based on integrated information of the secondary structure sequence.
    Zhang L; Zhao X; Kong L; Liu S
    Biochimie; 2014 Aug; 103():131-6. PubMed ID: 24859536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of beta-strand packing interactions using the signature product.
    Brown WM; Martin S; Chabarek JP; Strauss C; Faulon JL
    J Mol Model; 2006 Feb; 12(3):355-61. PubMed ID: 16365772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences.
    Oldfield CJ; Chen K; Kurgan L
    Methods Mol Biol; 2019; 1958():73-100. PubMed ID: 30945214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. StackSSSPred: A Stacking-Based Prediction of Supersecondary Structure from Sequence.
    Flot M; Mishra A; Kuchi AS; Hoque MT
    Methods Mol Biol; 2019; 1958():101-122. PubMed ID: 30945215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A protein structural class prediction method based on novel features.
    Zhang L; Zhao X; Kong L
    Biochimie; 2013 Sep; 95(9):1741-4. PubMed ID: 23770446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel and antiparallel β-strands differ in amino acid composition and availability of short constituent sequences.
    Tsutsumi M; Otaki JM
    J Chem Inf Model; 2011 Jun; 51(6):1457-64. PubMed ID: 21520893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.