BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11119705)

  • 1. Expression of beta-arrestins in toxic and cold thyroid nodules.
    Voigt C; Holzapfel H; Paschke R
    FEBS Lett; 2000 Dec; 486(3):208-12. PubMed ID: 11119705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and regulation of G protein-coupled receptor kinase 5 and beta-arrestin-1 in rat thyroid FRTL5 cells.
    Nagayama Y; Tanaka K; Namba H; Yamashita S; Niwa M
    Thyroid; 1996 Dec; 6(6):627-31. PubMed ID: 9001199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GRK2 and beta-arrestin 1 as negative regulators of thyrotropin receptor-stimulated response.
    Iacovelli L; Franchetti R; Masini M; De Blasi A
    Mol Endocrinol; 1996 Sep; 10(9):1138-46. PubMed ID: 8885248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human thyrotropin receptor is predominantly internalized by beta-arrestin 2.
    Frenzel R; Voigt C; Paschke R
    Endocrinology; 2006 Jun; 147(6):3114-22. PubMed ID: 16513835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of G(alpha)(s) proteins and TSH receptor signalling in hyperfunctioning thyroid nodules with TSH receptor mutations.
    Holzapfel HP; Bergner B; Wonerow P; Paschke R
    Eur J Endocrinol; 2002 Jul; 147(1):109-16. PubMed ID: 12088927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma.
    Tonacchera M; Chiovato L; Pinchera A; Agretti P; Fiore E; Cetani F; Rocchi R; Viacava P; Miccoli P; Vitti P
    J Clin Endocrinol Metab; 1998 Feb; 83(2):492-8. PubMed ID: 9467563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased expression of G-protein-coupled receptor kinases 3 and 4 in hyperfunctioning thyroid nodules.
    Voigt C; Holzapfel HP; Meyer S; Paschke R
    J Endocrinol; 2004 Jul; 182(1):173-82. PubMed ID: 15225142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shared sporadic and somatic thyrotropin receptor mutations display more active in vitro activities than familial thyrotropin receptor mutations.
    Lueblinghoff J; Eszlinger M; Jaeschke H; Mueller S; Bircan R; Gozu H; Sancak S; Akalin S; Paschke R
    Thyroid; 2011 Mar; 21(3):221-9. PubMed ID: 21190443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Termination of protease-activated receptor-1 signaling by beta-arrestins is independent of receptor phosphorylation.
    Chen CH; Paing MM; Trejo J
    J Biol Chem; 2004 Mar; 279(11):10020-31. PubMed ID: 14699102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of G protein-coupled receptor kinases in glucose-dependent insulinotropic polypeptide receptor signaling.
    Tseng CC; Zhang XY
    Endocrinology; 2000 Mar; 141(3):947-52. PubMed ID: 10698169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somatic mutations in thyroid nodular disease.
    Krohn K; Paschke R
    Mol Genet Metab; 2002 Mar; 75(3):202-8. PubMed ID: 11914031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Somatic mutations in the thyrotropin receptor gene and not in the Gs alpha protein gene in 31 toxic thyroid nodules.
    Führer D; Holzapfel HP; Wonerow P; Scherbaum WA; Paschke R
    J Clin Endocrinol Metab; 1997 Nov; 82(11):3885-91. PubMed ID: 9360556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulated expression of G protein-coupled receptor kinases (GRK's) and beta-arrestins in osteoblasts.
    Spurney RF
    Calcif Tissue Int; 2003 Aug; 73(2):153-60. PubMed ID: 14565597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-Arrestin-1 mediates thyrotropin-enhanced osteoblast differentiation.
    Boutin A; Eliseeva E; Gershengorn MC; Neumann S
    FASEB J; 2014 Aug; 28(8):3446-55. PubMed ID: 24723693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The extracellular thyrotropin receptor domain is not a major candidate for mutations in toxic thyroid nodules.
    Führer D; Kubisch C; Scheibler U; Lamesch P; Krohn K; Paschke R
    Thyroid; 1998 Nov; 8(11):997-1001. PubMed ID: 9848712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-adrenergic receptor kinase-2 and beta-arrestin-2 as mediators of odorant-induced desensitization.
    Dawson TM; Arriza JL; Jaworsky DE; Borisy FF; Attramadal H; Lefkowitz RJ; Ronnett GV
    Science; 1993 Feb; 259(5096):825-9. PubMed ID: 8381559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agonist-induced endocytosis and recycling of the gonadotropin-releasing hormone receptor: effect of beta-arrestin on internalization kinetics.
    Vrecl M; Anderson L; Hanyaloglu A; McGregor AM; Groarke AD; Milligan G; Taylor PL; Eidne KA
    Mol Endocrinol; 1998 Dec; 12(12):1818-29. PubMed ID: 9849957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking.
    Kohout TA; Lin FS; Perry SJ; Conner DA; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1601-6. PubMed ID: 11171997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-adrenergic receptor kinase-like activity and beta-arrestin are expressed in osteoblastic cells.
    Bliziotes M; Murtagh J; Wiren K
    J Bone Miner Res; 1996 Jun; 11(6):820-6. PubMed ID: 8725179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of G protein-coupled receptor regulation in antisense mRNA-expressing cells with reduced arrestin levels.
    Mundell SJ; Loudon RP; Benovic JL
    Biochemistry; 1999 Jul; 38(27):8723-32. PubMed ID: 10393547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.