These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 11120407)
1. Accurate segmentation of the breast region from digitized mammograms. Ojala T; Näppi J; Nevalainen O Comput Med Imaging Graph; 2001; 25(1):47-59. PubMed ID: 11120407 [TBL] [Abstract][Full Text] [Related]
2. Automated segmentation of digitized mammograms. Bick U; Giger ML; Schmidt RA; Nishikawa RM; Wolverton DE; Doi K Acad Radiol; 1995 Jan; 2(1):1-9. PubMed ID: 9419517 [TBL] [Abstract][Full Text] [Related]
3. Fully automated gradient based breast boundary detection for digitized X-ray mammograms. Kus P; Karagoz I Comput Biol Med; 2012 Jan; 42(1):75-82. PubMed ID: 22118773 [TBL] [Abstract][Full Text] [Related]
4. [Study of mass segmentation algorithm for digital mammograms]. Chen L; Zhang K; Jin Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec; 25(6):1282-4. PubMed ID: 19166192 [TBL] [Abstract][Full Text] [Related]
5. Computerized nipple identification for multiple image analysis in computer-aided diagnosis. Zhou C; Chan HP; Paramagul C; Roubidoux MA; Sahiner B; Hadjiiski LM; Petrick N Med Phys; 2004 Oct; 31(10):2871-82. PubMed ID: 15543797 [TBL] [Abstract][Full Text] [Related]
6. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision. Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257 [TBL] [Abstract][Full Text] [Related]
7. Automatic detection of breast border and nipple in digital mammograms. Méndez AJ; Tahoces PG; Lado MJ; Souto M; Correa JL; Vidal JJ Comput Methods Programs Biomed; 1996 May; 49(3):253-62. PubMed ID: 8800610 [TBL] [Abstract][Full Text] [Related]
8. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Keller BM; Nathan DL; Wang Y; Zheng Y; Gee JC; Conant EF; Kontos D Med Phys; 2012 Aug; 39(8):4903-17. PubMed ID: 22894417 [TBL] [Abstract][Full Text] [Related]
9. Dynamic multiple thresholding breast boundary detection algorithm for mammograms. Wu YT; Zhou C; Chan HP; Paramagul C; Hadjiiski LM; Daly CP; Douglas JA; Zhang Y; Sahiner B; Shi J; Wei J Med Phys; 2010 Jan; 37(1):391-401. PubMed ID: 20175501 [TBL] [Abstract][Full Text] [Related]
10. A dual-stage method for lesion segmentation on digital mammograms. Yuan Y; Giger ML; Li H; Suzuki K; Sennett C Med Phys; 2007 Nov; 34(11):4180-93. PubMed ID: 18072482 [TBL] [Abstract][Full Text] [Related]
11. A robust method for segmenting pectoral muscle in mediolateral oblique (MLO) mammograms. Yin K; Yan S; Song C; Zheng B Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):237-248. PubMed ID: 30288698 [TBL] [Abstract][Full Text] [Related]
12. A hierarchical pipeline for breast boundary segmentation and calcification detection in mammograms. Shi P; Zhong J; Rampun A; Wang H Comput Biol Med; 2018 May; 96():178-188. PubMed ID: 29597143 [TBL] [Abstract][Full Text] [Related]
13. Computer aided detection of microcalcifications in digital mammograms. Boccignone G; Chianese A; Picariello A Comput Biol Med; 2000 Sep; 30(5):267-86. PubMed ID: 10913773 [TBL] [Abstract][Full Text] [Related]
14. A comparison of two methods for the segmentation of masses in the digital mammograms. Dubey RB; Hanmandlu M; Gupta SK Comput Med Imaging Graph; 2010 Apr; 34(3):185-91. PubMed ID: 19828291 [TBL] [Abstract][Full Text] [Related]
15. Image segmentation in digital mammography: comparison of local thresholding and region growing algorithms. Kallergi M; Woods K; Clarke LP; Qian W; Clark RA Comput Med Imaging Graph; 1992; 16(5):323-31. PubMed ID: 1394079 [TBL] [Abstract][Full Text] [Related]
16. Computer aided system for segmentation and visualization of microcalcifications in digital mammograms. Reljin B; Milosević Z; Stojić T; Reljin I Folia Histochem Cytobiol; 2009 Jan; 47(3):525-32. PubMed ID: 20164042 [TBL] [Abstract][Full Text] [Related]
17. Location of mammograms ROI's and reduction of false-positive. Salazar-Licea LA; Pedraza-Ortega JC; Pastrana-Palma A; Aceves-Fernandez MA Comput Methods Programs Biomed; 2017 May; 143():97-111. PubMed ID: 28391823 [TBL] [Abstract][Full Text] [Related]
18. Hybrid segmentation of mass in mammograms using template matching and dynamic programming. Song E; Xu S; Xu X; Zeng J; Lan Y; Zhang S; Hung CC Acad Radiol; 2010 Nov; 17(11):1414-24. PubMed ID: 20817575 [TBL] [Abstract][Full Text] [Related]
19. A New Breast Border Extraction and Contrast Enhancement Technique with Digital Mammogram Images for Improved Detection of Breast Cancer. Hazarika M; Mahanta LB Asian Pac J Cancer Prev; 2018 Aug; 19(8):2141-2148. PubMed ID: 30139217 [TBL] [Abstract][Full Text] [Related]
20. Breast peripheral area correction in digital mammograms. Tortajada M; Oliver A; Martí R; Ganau S; Tortajada L; Sentís M; Freixenet J; Zwiggelaar R Comput Biol Med; 2014 Jul; 50():32-40. PubMed ID: 24845018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]