These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 11121045)

  • 1. Evolutionary modification of development in mammalian teeth: quantifying gene expression patterns and topography.
    Jernvall J; Keränen SV; Thesleff I
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14444-8. PubMed ID: 11121045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and evolution occlude: evolution of development in mammalian teeth.
    Polly PD
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14019-21. PubMed ID: 11121009
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification of a novel putative signaling center, the tertiary enamel knot in the postnatal mouse molar tooth.
    Luukko K; Løes S; Furmanek T; Fjeld K; Kvinnsland IH; Kettunen P
    Mech Dev; 2003 Mar; 120(3):270-6. PubMed ID: 12591596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene.
    Jernvall J; Kettunen P; Karavanova I; Martin LB; Thesleff I
    Int J Dev Biol; 1994 Sep; 38(3):463-9. PubMed ID: 7848830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of mammalian tooth cusp patterning by ectodin.
    Kassai Y; Munne P; Hotta Y; Penttilä E; Kavanagh K; Ohbayashi N; Takada S; Thesleff I; Jernvall J; Itoh N
    Science; 2005 Sep; 309(5743):2067-70. PubMed ID: 16179481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enamel knot as a signaling center in the developing mouse tooth.
    Vaahtokari A; Aberg T; Jernvall J; Keränen S; Thesleff I
    Mech Dev; 1996 Jan; 54(1):39-43. PubMed ID: 8808404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice.
    Kratochwil K; Galceran J; Tontsch S; Roth W; Grosschedl R
    Genes Dev; 2002 Dec; 16(24):3173-85. PubMed ID: 12502739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tooth Morphogenesis and FGF4 Expression During Development of Molar Tooth in Three Muroid Rodents: Calomyscus elburzensis (Calomyscidae), Mesocricetus auratus (Cricetidae) and Mus musculus (Muridae).
    Hamidi K; Darvish J; Matin MM; Javanmard AS; Kilpatrick CW
    Anat Rec (Hoboken); 2017 Dec; 300(12):2138-2149. PubMed ID: 28806497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reiterative signaling and patterning during mammalian tooth morphogenesis.
    Jernvall J; Thesleff I
    Mech Dev; 2000 Mar; 92(1):19-29. PubMed ID: 10704885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shh Plays an Inhibitory Role in Cusp Patterning by Regulation of Sostdc1.
    Kim J; Ahn Y; Adasooriya D; Woo EJ; Kim HJ; Hu KS; Krumlauf R; Cho SW
    J Dent Res; 2019 Jan; 98(1):98-106. PubMed ID: 30325689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Explanation for How FGFs Predict Species-Specific Tooth Cusp Patterns.
    Li L; Tang Q; Kwon HE; Wu Z; Kim EJ; Jung HS
    J Dent Res; 2018 Jul; 97(7):828-834. PubMed ID: 29489426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions.
    Keränen SV; Kettunen P; Aberg T; Thesleff I; Jernvall J
    Dev Genes Evol; 1999 Aug; 209(8):495-506. PubMed ID: 10415326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the difficulty of increasing dental complexity.
    Harjunmaa E; Kallonen A; Voutilainen M; Hämäläinen K; Mikkola ML; Jernvall J
    Nature; 2012 Mar; 483(7389):324-7. PubMed ID: 22398444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of epithelial-mesenchymal interactions in the initial morphogenesis of the mammalian tooth.
    Dassule HR; McMahon AP
    Dev Biol; 1998 Oct; 202(2):215-27. PubMed ID: 9769173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of developmental regulatory genes with the development of different molar tooth shapes in two species of rodents.
    Keränen SV; Aberg T; Kettunen P; Thesleff I; Jernvall J
    Dev Genes Evol; 1998 Nov; 208(9):477-86. PubMed ID: 9799429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of novel Fgf enhancers and their role in dental evolution.
    Tapaltsyan V; Charles C; Hu J; Mindell D; Ahituv N; Wilson GM; Black BL; Viriot L; Klein OD
    Evol Dev; 2016; 18(1):31-40. PubMed ID: 26086993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evo-devo models of tooth development and the origin of hominoid molar diversity.
    Ortiz A; Bailey SE; Schwartz GT; Hublin JJ; Skinner MM
    Sci Adv; 2018 Apr; 4(4):eaar2334. PubMed ID: 29651459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replaying evolutionary transitions from the dental fossil record.
    Harjunmaa E; Seidel K; Häkkinen T; Renvoisé E; Corfe IJ; Kallonen A; Zhang ZQ; Evans AR; Mikkola ML; Salazar-Ciudad I; Klein OD; Jernvall J
    Nature; 2014 Aug; 512(7512):44-8. PubMed ID: 25079326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis.
    Kettunen P; Laurikkala J; Itäranta P; Vainio S; Itoh N; Thesleff I
    Dev Dyn; 2000 Nov; 219(3):322-32. PubMed ID: 11066089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotype, phenotype, and developmental biology of molar tooth characters.
    Jernvall J; Jung HS
    Am J Phys Anthropol; 2000; Suppl 31():171-90. PubMed ID: 11123840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.