These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 11121609)

  • 1. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs.
    Lewis T; Nichols PD; McMeekin TA
    J Microbiol Methods; 2000 Dec; 43(2):107-16. PubMed ID: 11121609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and optimisation of direct transesterification methods for the assessment of lipid accumulation in oleaginous filamentous fungi.
    Langseter AM; Dzurendova S; Shapaval V; Kohler A; Ekeberg D; Zimmermann B
    Microb Cell Fact; 2021 Mar; 20(1):59. PubMed ID: 33658027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the Potential of Oleaginous Yeasts as Feedstock for Biodiesel Production.
    Mukhtar H; Suliman SM; Shabbir A; Mumtaz MW; Rashid U; Rahimuddin SA
    Protein Pept Lett; 2018; 25(2):195-201. PubMed ID: 29359654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of fatty acid extraction methods for Thraustochytrium sp. ONC-T18.
    Burja AM; Armenta RE; Radianingtyas H; Barrow CJ
    J Agric Food Chem; 2007 Jun; 55(12):4795-801. PubMed ID: 17497884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of co-solvents in improving the direct transesterification of wet microalgal biomass under supercritical condition.
    Abedini Najafabadi H; Vossoughi M; Pazuki G
    Bioresour Technol; 2015 Oct; 193():90-6. PubMed ID: 26117240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total Fatty Acid Content Determination of Whole Microalgal Biomass Using In Situ Transesterification.
    Van Wychen S; Laurens LML
    Methods Mol Biol; 2020; 1980():203-214. PubMed ID: 29199376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process optimization of one-step direct transesterification and dual-step extraction-transesterification of the Chlorococcum-Nannochloropsis consortium for biodiesel production.
    Mathimani T; Le TT; Salmen SH; Ali Alharbi S; Jhanani GK
    Environ Res; 2024 Jan; 240(Pt 1):117580. PubMed ID: 37925129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.
    Jo YJ; Lee OK; Lee EY
    Bioresour Technol; 2014 Apr; 158():105-10. PubMed ID: 24583221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiesel synthesis by direct transesterification of microalga Botryococcus braunii with continuous methanol reflux.
    Hidalgo P; Ciudad G; Schober S; Mittelbach M; Navia R
    Bioresour Technol; 2015 Apr; 181():32-9. PubMed ID: 25625464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of in-situ fatty acid extraction protocols for the analysis of staphylococcal cell membrane associated fatty acids by gas chromatography.
    Crompton MJ; Dunstan RH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 May; 1084():80-88. PubMed ID: 29574290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct transesterification of total fatty acids of adipose tissue, and of freeze-dried muscle and liver with boron-trifluoride in methanol.
    Rule DC
    Meat Sci; 1997 May; 46(1):23-32. PubMed ID: 22061842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of solvent mixtures for pressurized solvent extraction of soil fatty acid biomarkers.
    Jeannotte R; Hamel C; Jabaji S; Whalen JK
    Talanta; 2008 Oct; 77(1):195-9. PubMed ID: 18804620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of fatty acid methyl esters derived from algae Scenedesmus dimorphus biomass by GC-MS with one-step esterification of free fatty acids and transesterification of glycerolipids.
    Avula SGC; Belovich JM; Xu Y
    J Sep Sci; 2017 May; 40(10):2214-2227. PubMed ID: 28322518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae.
    Griffiths MJ; van Hille RP; Harrison ST
    Lipids; 2010 Nov; 45(11):1053-60. PubMed ID: 20820931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonication aided in-situ transesterification of microbial lipids to biodiesel.
    Zhang X; Yan S; Tyagi RD; Surampalli RY; Valéro JR
    Bioresour Technol; 2014 Oct; 169():175-180. PubMed ID: 25050978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of one-step sample preparation methods for fatty acid profiling of milk fat.
    Liu Z; Wang J; Li C; Rochfort S
    Food Chem; 2020 Jun; 315():126281. PubMed ID: 32004984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion and recovery of saponifiable lipids from microalgae using a nonpolar solvent via lipase-assisted extraction.
    Law SQK; Halim R; Scales PJ; Martin GJO
    Bioresour Technol; 2018 Jul; 260():338-347. PubMed ID: 29649726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability of Omega-3/6 Fatty Acid Obtained Through Extraction-Transesterification Processes from Phaeodactylum tricornutum.
    Ruiz-Dominguez MC; Toledo C; Órdenes D; Vílchez C; Ardiles P; Palma J; Cerezal P
    Acta Chim Slov; 2021 Sep; 68(3):629-637. PubMed ID: 34897541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology.
    Patil PD; Gude VG; Mannarswamy A; Cooke P; Munson-McGee S; Nirmalakhandan N; Lammers P; Deng S
    Bioresour Technol; 2011 Jan; 102(2):1399-405. PubMed ID: 20933395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ transesterification of highly wet microalgae using hydrochloric acid.
    Kim B; Im H; Lee JW
    Bioresour Technol; 2015 Jun; 185():421-5. PubMed ID: 25769690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.