These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 11121801)
1. Greater susceptibility of failing cardiac myocytes to oxygen free radical-mediated injury. Tsutsui H; Ide T; Hayashidani S; Suematsu N; Utsumi H; Nakamura R; Egashira K; Takeshita A Cardiovasc Res; 2001 Jan; 49(1):103-9. PubMed ID: 11121801 [TBL] [Abstract][Full Text] [Related]
2. Correlation between direct ESR spectroscopic measurements and electromechanical and biochemical assessments of exogenous free radical injury in isolated rat cardiac myocytes. Courtois M; Maupoil V; Fantini E; Durot I; Javouhey-Donzel A; Athias P; Grynberg A; Rochette L Free Radic Biol Med; 1998 Jan; 24(1):121-31. PubMed ID: 9436621 [TBL] [Abstract][Full Text] [Related]
3. Amiodarone protects cardiac myocytes against oxidative injury by its free radical scavenging action. Ide T; Tsutsui H; Kinugawa S; Utsumi H; Takeshita A Circulation; 1999 Aug; 100(7):690-2. PubMed ID: 10449688 [TBL] [Abstract][Full Text] [Related]
4. Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. Zweier JL J Biol Chem; 1988 Jan; 263(3):1353-7. PubMed ID: 2826476 [TBL] [Abstract][Full Text] [Related]
5. Positive inotropic effect of insulin-like growth factor-1 on normal and failing cardiac myocytes. Kinugawa S; Tsutsui H; Ide T; Nakamura R; Arimura K; Egashira K; Takeshita A Cardiovasc Res; 1999 Jul; 43(1):157-64. PubMed ID: 10536700 [TBL] [Abstract][Full Text] [Related]
6. Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Ide T; Tsutsui H; Kinugawa S; Suematsu N; Hayashidani S; Ichikawa K; Utsumi H; Machida Y; Egashira K; Takeshita A Circ Res; 2000 Feb; 86(2):152-7. PubMed ID: 10666410 [TBL] [Abstract][Full Text] [Related]
7. Dose and time effect of CdTe quantum dots on antioxidant capacities of the liver and kidneys in mice. Wang J; Sun H; Meng P; Wang M; Tian M; Xiong Y; Zhang X; Huang P Int J Nanomedicine; 2017; 12():6425-6435. PubMed ID: 28919745 [TBL] [Abstract][Full Text] [Related]
8. [Demonstration of secondary free radicals and the role of calpain in functional changes associated with the myocardial ischemia-reperfusion sequence]. Perrin C; Vergely C; Zeller M; Maupoil V; Rochette L Arch Mal Coeur Vaiss; 2000 Aug; 93(8):931-6. PubMed ID: 10989732 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Tsutsui H; Kinugawa S; Matsushima S Cardiovasc Res; 2009 Feb; 81(3):449-56. PubMed ID: 18854381 [TBL] [Abstract][Full Text] [Related]
10. Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. Sam F; Kerstetter DL; Pimental DR; Mulukutla S; Tabaee A; Bristow MR; Colucci WS; Sawyer DB J Card Fail; 2005 Aug; 11(6):473-80. PubMed ID: 16105639 [TBL] [Abstract][Full Text] [Related]
11. Status of myocardial antioxidants in ischemia-reperfusion injury. Dhalla NS; Elmoselhi AB; Hata T; Makino N Cardiovasc Res; 2000 Aug; 47(3):446-56. PubMed ID: 10963718 [TBL] [Abstract][Full Text] [Related]
12. Antioxidant defences in rat, pig, guinea pig, and human hearts: comparison with xanthine oxidoreductase activity. Janssen M; van der Meer P; de Jong JW Cardiovasc Res; 1993 Nov; 27(11):2052-7. PubMed ID: 8287417 [TBL] [Abstract][Full Text] [Related]
13. [The effects of alpha-linolenic acid on the functioning of the isolated heart during acute myocardial ischemia/reperfusion]. Kukoba TV; Shysh AM; Moĭbenko OO; Kotsiuruba AV; Kharchenko OV Fiziol Zh (1994); 2006; 52(5):12-20. PubMed ID: 17176834 [TBL] [Abstract][Full Text] [Related]
14. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Yim MB; Chock PB; Stadtman ER Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5006-10. PubMed ID: 2164216 [TBL] [Abstract][Full Text] [Related]
15. Changes in antioxidant enzymes in isolated cardiac myocytes subjected to hypoxia-reoxygenation. Kirshenbaum LA; Singal PK Lab Invest; 1992 Dec; 67(6):796-803. PubMed ID: 1460870 [TBL] [Abstract][Full Text] [Related]
16. A relative deficit in antioxidant reserve may contribute in cardiac failure. Singal PK; Kirshenbaum LA Can J Cardiol; 1990 Mar; 6(2):47-9. PubMed ID: 2138050 [TBL] [Abstract][Full Text] [Related]
17. Oxidative damage during chagasic cardiomyopathy development: role of mitochondrial oxidant release and inefficient antioxidant defense. Wen JJ; Vyatkina G; Garg N Free Radic Biol Med; 2004 Dec; 37(11):1821-33. PubMed ID: 15528041 [TBL] [Abstract][Full Text] [Related]
18. Impaired antioxidant defence in guinea pig heart tissues treated with halothane. Durak I; Kurtipek O; Oztürk HS; Birey M; Güven T; Kavutcu M; Kaçmaz M; Dikmen B; Yel M; Canbolat O Can J Anaesth; 1997 Sep; 44(9):1014-20. PubMed ID: 9305567 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Ide T; Tsutsui H; Kinugawa S; Utsumi H; Kang D; Hattori N; Uchida K; Arimura Ki; Egashira K; Takeshita A Circ Res; 1999 Aug; 85(4):357-63. PubMed ID: 10455064 [TBL] [Abstract][Full Text] [Related]
20. Effect of dietary palm olein oil on oxidative stress associated with ischemic-reperfusion injury in isolated rat heart. Narang D; Sood S; Thomas MK; Dinda AK; Maulik SK BMC Pharmacol; 2004 Nov; 4():29. PubMed ID: 15535879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]