These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 11121973)
1. DegraPol-foam: a degradable and highly porous polyesterurethane foam as a new substrate for bone formation. Saad B; Kuboki Y; Welti M; Uhlschmid GK; Neuenschwander P; Suter UW Artif Organs; 2000 Dec; 24(12):939-45. PubMed ID: 11121973 [TBL] [Abstract][Full Text] [Related]
2. In vitro evaluation of the biofunctionality of osteoblasts cultured on DegraPol-foam. Saad B; Casotti M; Huber T; Schmutz P; Welti M; Uhlschmid GK; Neuenschwander P; Suter UW J Biomater Sci Polym Ed; 2000; 11(8):787-800. PubMed ID: 11211092 [TBL] [Abstract][Full Text] [Related]
3. Interactions of osteoblasts and macrophages with biodegradable and highly porous polyesterurethane foam and its degradation products. Saad B; Matter S; Ciardelli G; Uhlschmid GK; Welti M; Neuenschwander P; Suter UW J Biomed Mater Res; 1996 Nov; 32(3):355-66. PubMed ID: 8897140 [TBL] [Abstract][Full Text] [Related]
4. Chondrocyte-biocompatibility of DegraPol-foam: in vitro evaluations. Saad B; Moro M; Tun-Kyi A; Welti M; Schmutz P; Uhlschmid GK; Neuenschwander P; Suter UW J Biomater Sci Polym Ed; 1999; 10(11):1107-19. PubMed ID: 10606029 [TBL] [Abstract][Full Text] [Related]
5. New versatile, elastomeric, degradable polymeric materials for medicine. Saad B; Neuenschwander P; Uhlschmid GK; Suter UW Int J Biol Macromol; 1999; 25(1-3):293-301. PubMed ID: 10416677 [TBL] [Abstract][Full Text] [Related]
6. Degradable and highly porous polyesterurethane foam as biomaterial: effects and phagocytosis of degradation products in osteoblasts. Saad B; Ciardelli G; Matter S; Welti M; Uhlschmid GK; Neuenschwander P; Suter UW J Biomed Mater Res; 1998 Mar; 39(4):594-602. PubMed ID: 9492221 [TBL] [Abstract][Full Text] [Related]
7. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. Kuboki Y; Takita H; Kobayashi D; Tsuruga E; Inoue M; Murata M; Nagai N; Dohi Y; Ohgushi H J Biomed Mater Res; 1998 Feb; 39(2):190-9. PubMed ID: 9457547 [TBL] [Abstract][Full Text] [Related]
8. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. Tsuruga E; Takita H; Itoh H; Wakisaka Y; Kuboki Y J Biochem; 1997 Feb; 121(2):317-24. PubMed ID: 9089406 [TBL] [Abstract][Full Text] [Related]
9. Tissue engineering bone formation in novel recombinant human bone morphogenic protein 2-atelocollagen composite scaffolds. Hou LT; Liu CM; Liu BY; Chang PC; Chen MH; Ho MH; Jehng SM; Liu HC J Periodontol; 2007 Feb; 78(2):335-43. PubMed ID: 17274724 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenetic protein. Noshi T; Yoshikawa T; Ikeuchi M; Dohi Y; Ohgushi H; Horiuchi K; Sugimura M; Ichijima K; Yonemasu K J Biomed Mater Res; 2000 Dec; 52(4):621-30. PubMed ID: 11033544 [TBL] [Abstract][Full Text] [Related]
11. Bone generation on PHBV matrices: an in vitro study. Köse GT; Korkusuz F; Korkusuz P; Purali N; Ozkul A; Hasirci V Biomaterials; 2003 Dec; 24(27):4999-5007. PubMed ID: 14559013 [TBL] [Abstract][Full Text] [Related]
12. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. Kuboki Y; Jin Q; Takita H J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 2):S105-15. PubMed ID: 11314788 [TBL] [Abstract][Full Text] [Related]
13. In vitro and in vivo studies of a bone morphogenetic protein-2 expressing adenoviral vector. Okubo Y; Bessho K; Fujimura K; Iizuka T; Miyatake SI J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 2):S99-104. PubMed ID: 11314802 [TBL] [Abstract][Full Text] [Related]
14. In vitro and in vivo induction of bone formation based on ex vivo gene therapy using rat adipose-derived adult stem cells expressing BMP-7. Yang M; Ma QJ; Dang GT; Ma Kt; Chen P; Zhou CY Cytotherapy; 2005; 7(3):273-81. PubMed ID: 16081354 [TBL] [Abstract][Full Text] [Related]
15. Piceatannol stimulates osteoblast differentiation that may be mediated by increased bone morphogenetic protein-2 production. Chang JK; Hsu YL; Teng IC; Kuo PL Eur J Pharmacol; 2006 Dec; 551(1-3):1-9. PubMed ID: 17026990 [TBL] [Abstract][Full Text] [Related]
17. Carrier dependent cell differentiation of bone morphogenetic protein-2 induced osteogenesis and chondrogenesis during the early implantation stage in rats. Takita H; Vehof JW; Jansen JA; Yamamoto M; Tabata Y; Tamura M; Kuboki Y J Biomed Mater Res A; 2004 Oct; 71(1):181-9. PubMed ID: 15368268 [TBL] [Abstract][Full Text] [Related]
18. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Takahashi Y; Yamamoto M; Tabata Y Biomaterials; 2005 Aug; 26(23):4856-65. PubMed ID: 15763265 [TBL] [Abstract][Full Text] [Related]
19. Tricalcium phosphate and glutaraldehyde crosslinked gelatin incorporating bone morphogenetic protein--a viable scaffold for bone tissue engineering. Yang SH; Hsu CK; Wang KC; Hou SM; Lin FH J Biomed Mater Res B Appl Biomater; 2005 Jul; 74(1):468-75. PubMed ID: 15889421 [TBL] [Abstract][Full Text] [Related]
20. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Chesnutt BM; Yuan Y; Buddington K; Haggard WO; Bumgardner JD Tissue Eng Part A; 2009 Sep; 15(9):2571-9. PubMed ID: 19309240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]