These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 111226)

  • 1. Incorporation of lysine into Y base of phenylalanine tRNA in Vero cells.
    Pergolizzi RG; Engelhardt DL; Grunberger D
    Nucleic Acids Res; 1979; 6(6):2209-16. PubMed ID: 111226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of phenylalanine transfer RNA lacking the wye base in Vero cells during methionine starvation.
    Pergolizzi RG; Engelhardt DL; Grunberger D
    J Biol Chem; 1978 Sep; 253(18):6341-3. PubMed ID: 681356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in post-transcriptional modification of the Y base in phenylalanine tRNA from tumor cells.
    Grunberger D; Pergolizzi RG; Kuchino Y; Mushinski JF; Nishimura S
    Recent Results Cancer Res; 1983; 84():133-45. PubMed ID: 6405457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of exogenous nutrients on the biosynthesis of Y base in tRNAPHe from Ehrlich ascites carcinoma.
    Pergolizzi RG; Grunberger D
    Cancer Lett; 1980 Feb; 8(4):329-33. PubMed ID: 7370969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abundance of tRNAPhe lacking the peroxy Y-base in mouse neuroblastoma.
    Salomon R; Giveon D; Kimhi Y; Littauer UZ
    Biochemistry; 1976 Nov; 15(24):5258-62. PubMed ID: 999805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-specific, hypomodified phenylalanyl-tRNA is utilized in translation in preference to the fully modified isoacceptor of normal cells.
    Smith DW; McNamara AL; Mushinski JF; Hatfield DL
    J Biol Chem; 1985 Jan; 260(1):147-51. PubMed ID: 3843839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Binding of the yeast phenylalanine tRNA with Escherichia coli ribosomes. Effect of the removal of a modified base from the 3'-end of the anticodon on codon-anticodon interaction].
    Katunin VI; Kirillov SV
    Mol Biol (Mosk); 1984; 18(6):1486-96. PubMed ID: 6084167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General and specific effects of amino acid starvation on the formation of undermodified Escherichia coli phenylalanine tRNA.
    Fournier MJ; Webb E; Kitchingman GR
    Biochim Biophys Acta; 1976 Nov; 454(1):97-113. PubMed ID: 791374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of hydroxy-Y base from rat liver tRNAPhe.
    Kasai H; Yamaizumi Z; Kuchino Y; Nishimura S
    Nucleic Acids Res; 1979 Mar; 6(3):993-9. PubMed ID: 440976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of post-transcriptional base modifications on the site-specific function of transfer RNA in eukaryote translation.
    Smith DW; Hatfield DL
    J Mol Biol; 1986 Jun; 189(4):663-71. PubMed ID: 3783686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characterization of fluorescent derivatives of tRNA Phe by experiments in the ribosomal system].
    Bintermaĭer V; Tsakhau GG
    Mol Biol (Mosk); 1975; 9(1):63-9. PubMed ID: 768743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation of cell type and cell density to the degree of post-transcriptional modification of tRNALys and tRNAPhe.
    Katze JR
    Biochim Biophys Acta; 1975 Nov; 407(4):392-8. PubMed ID: 170990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel conformational change of the anticodon region of tRNAPhe (yeast).
    Urbanke C; Maass G
    Nucleic Acids Res; 1978 May; 5(5):1551-60. PubMed ID: 351565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and analysis of oncofetal tRNA and its possible application for cancer diagnosis and therapy.
    Nishimura S; Shindo-Okada N; Kasai H; Kuchino Y; Noguchi S; Iigo M; Hoshi A
    Recent Results Cancer Res; 1983; 84():401-12. PubMed ID: 6844700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replacement of wybutine by hydrazines and its effect on the active conformation of yeast tRNAPhe.
    Schleich HG; Wintermeyer W; Zachau HG
    Nucleic Acids Res; 1978 May; 5(5):1701-13. PubMed ID: 351568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide sequence of the anticodon region of barley embryo phenylalanine transfer RNA.
    Wower JM; Janowicz Z; Augustyniak J
    Acta Biochim Pol; 1978; 25(1):61-70. PubMed ID: 665078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of excision of the Y-base on the interaction of tRNAPhe (yeast) with phenylalanyl-tRNA synthetase (yeast).
    Krauss G; Peters F; Maass G
    Nucleic Acids Res; 1976 Mar; 3(3):631-9. PubMed ID: 5707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A heterologous system for detecting eukaryotic enzymes which synthesize pseudouridine in transfer ribonucleic acids.
    Mullenbach GT; Kammen HO; Penhoet EE
    J Biol Chem; 1976 Aug; 251(15):4570-8. PubMed ID: 780353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presence of the hypermodified nucleotide N6-(delta 2-isopentenyl)-2-methylthioadenosine prevents codon misreading by Escherichia coli phenylalanyl-transfer RNA.
    Wilson RK; Roe BA
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):409-13. PubMed ID: 2643111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of codon-anticodon interaction in ribosomes. Direct functional evidence that isolated 30S subunits contain two codon-specific binding sites for transfer RNA.
    Kirillov SV; Makhno VI; Semenkov YP
    Nucleic Acids Res; 1980 Jan; 8(1):183-96. PubMed ID: 6986612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.