These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
865 related articles for article (PubMed ID: 11123353)
1. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Almand B; Clark JI; Nikitina E; van Beynen J; English NR; Knight SC; Carbone DP; Gabrilovich DI J Immunol; 2001 Jan; 166(1):678-89. PubMed ID: 11123353 [TBL] [Abstract][Full Text] [Related]
2. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Mirza N; Fishman M; Fricke I; Dunn M; Neuger AM; Frost TJ; Lush RM; Antonia S; Gabrilovich DI Cancer Res; 2006 Sep; 66(18):9299-307. PubMed ID: 16982775 [TBL] [Abstract][Full Text] [Related]
3. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Kusmartsev S; Cheng F; Yu B; Nefedova Y; Sotomayor E; Lush R; Gabrilovich D Cancer Res; 2003 Aug; 63(15):4441-9. PubMed ID: 12907617 [TBL] [Abstract][Full Text] [Related]
4. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. Kusmartsev S; Nefedova Y; Yoder D; Gabrilovich DI J Immunol; 2004 Jan; 172(2):989-99. PubMed ID: 14707072 [TBL] [Abstract][Full Text] [Related]
5. Combination of all-trans retinoic acid and a human papillomavirus therapeutic vaccine suppresses the number and function of immature myeloid cells and enhances antitumor immunity. Song X; Ye D; Liu B; Cui J; Zhao X; Yi L; Liang J; Song J; Zhang Z; Zhao Q Cancer Sci; 2009 Feb; 100(2):334-40. PubMed ID: 19068090 [TBL] [Abstract][Full Text] [Related]
6. Macrophages are more potent immune suppressors ex vivo than immature myeloid-derived suppressor cells induced by metastatic murine mammary carcinomas. Hamilton MJ; Bosiljcic M; Lepard NE; Halvorsen EC; Ho VW; Banáth JP; Krystal G; Bennewith KL J Immunol; 2014 Jan; 192(1):512-22. PubMed ID: 24285836 [TBL] [Abstract][Full Text] [Related]
7. The immunogenicity of dendritic cell-derived exosomes. Quah BJ; O'Neill HC Blood Cells Mol Dis; 2005; 35(2):94-110. PubMed ID: 15975838 [TBL] [Abstract][Full Text] [Related]
8. Immature myeloid cells and cancer-associated immune suppression. Kusmartsev S; Gabrilovich DI Cancer Immunol Immunother; 2002 Aug; 51(6):293-8. PubMed ID: 12111117 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. Gabrilovich DI; Velders MP; Sotomayor EM; Kast WM J Immunol; 2001 May; 166(9):5398-406. PubMed ID: 11313376 [TBL] [Abstract][Full Text] [Related]
10. Clinical significance of defective dendritic cell differentiation in cancer. Almand B; Resser JR; Lindman B; Nadaf S; Clark JI; Kwon ED; Carbone DP; Gabrilovich DI Clin Cancer Res; 2000 May; 6(5):1755-66. PubMed ID: 10815894 [TBL] [Abstract][Full Text] [Related]
11. Accelerated in vitro differentiation of blood monocytes into dendritic cells in human sepsis. Faivre V; Lukaszewicz AC; Alves A; Charron D; Payen D; Haziot A Clin Exp Immunol; 2007 Mar; 147(3):426-39. PubMed ID: 17302891 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. Kusmartsev S; Gabrilovich DI J Leukoc Biol; 2003 Aug; 74(2):186-96. PubMed ID: 12885935 [TBL] [Abstract][Full Text] [Related]
13. Defective differentiation of myeloid and plasmacytoid dendritic cells in advanced cancer patients is not normalized by tyrosine kinase inhibition of the vascular endothelial growth factor receptor. van Cruijsen H; Hoekman K; Stam AG; van den Eertwegh AJ; Kuenen BC; Scheper RJ; Giaccone G; de Gruijl TD Clin Dev Immunol; 2007; 2007():17315. PubMed ID: 18320010 [TBL] [Abstract][Full Text] [Related]
16. Aspirin inhibits in vitro maturation and in vivo immunostimulatory function of murine myeloid dendritic cells. Hackstein H; Morelli AE; Larregina AT; Ganster RW; Papworth GD; Logar AJ; Watkins SC; Falo LD; Thomson AW J Immunol; 2001 Jun; 166(12):7053-62. PubMed ID: 11390449 [TBL] [Abstract][Full Text] [Related]
17. Constitutively active STAT5b induces cytokine-independent growth of the acute myeloid leukemia-derived MUTZ-3 cell line and accelerates its differentiation into mature dendritic cells. Bontkes HJ; Ruizendaal JJ; Kramer D; Santegoets SJ; Scheper RJ; de Gruijl TD; Meijer CJ; Hooijberg E J Immunother; 2006; 29(2):188-200. PubMed ID: 16531819 [TBL] [Abstract][Full Text] [Related]
18. Large-scale immunomagnetic selection of CD14+ monocytes to generate dendritic cells for cancer immunotherapy: a phase I study. Babatz J; Röllig C; Oelschlägel U; Zhao S; Ehninger G; Schmitz M; Bornhäuser M J Hematother Stem Cell Res; 2003 Oct; 12(5):515-23. PubMed ID: 14594508 [TBL] [Abstract][Full Text] [Related]
19. Successful colon cancer eradication after chemoimmunotherapy is associated with profound phenotypic change of intratumoral myeloid cells. Medina-Echeverz J; Fioravanti J; Zabala M; Ardaiz N; Prieto J; Berraondo P J Immunol; 2011 Jan; 186(2):807-15. PubMed ID: 21148040 [TBL] [Abstract][Full Text] [Related]
20. Additive inhibition of dendritic cell allostimulatory capacity by alcohol and hepatitis C is not restored by DC maturation and involves abnormal IL-10 and IL-2 induction. Dolganiuc A; Kodys K; Kopasz A; Marshall C; Mandrekar P; Szabo G Alcohol Clin Exp Res; 2003 Jun; 27(6):1023-31. PubMed ID: 12824825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]