BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11123522)

  • 1. Effects of bilateral microinjections of ibotenic acid in the thalamic reticular nucleus on delta oscillations and sleep in freely-moving rats.
    Marini G; Ceccarelli P; Mancia M
    J Sleep Res; 2000 Dec; 9(4):359-66. PubMed ID: 11123522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure.
    Petrovic J; Ciric J; Lazic K; Kalauzi A; Saponjic J
    Exp Neurol; 2013 Sep; 247():562-71. PubMed ID: 23481548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thalamocortical dysrhythmia and the thalamic reticular nucleus in behaving rats.
    Marini G; Ceccarelli P; Mancia M
    Clin Neurophysiol; 2002 Jul; 113(7):1152-64. PubMed ID: 12088712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of glutamate agonist versus procaine microinjections into the basal forebrain cholinergic cell area upon gamma and theta EEG activity and sleep-wake state.
    Cape EG; Jones BE
    Eur J Neurosci; 2000 Jun; 12(6):2166-84. PubMed ID: 10886356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potentiation of electroencephalographic spindles by ibotenate microinjections into nucleus reticularis thalami of cats.
    Marini G; Macchi G; Mancia M
    Neuroscience; 1992 Dec; 51(4):759-62. PubMed ID: 1488120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. REM sleep diversity following the pedunculopontine tegmental nucleus lesion in rat.
    Petrovic J; Lazic K; Kalauzi A; Saponjic J
    Behav Brain Res; 2014 Sep; 271():258-68. PubMed ID: 24946074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abolition of the neocortically monitored theta rhythm after ibotenic acid lesion of the parafascicular nucleus in behaving rats.
    Marini G; Tredici G; Mancia M
    Sleep Res Online; 1998; 1(4):128-31. PubMed ID: 11382869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topography of the sleep/wake states related EEG microstructure and transitions structure differentiates the functionally distinct cholinergic innervation disorders in rat.
    Petrovic J; Lazic K; Ciric J; Kalauzi A; Saponjic J
    Behav Brain Res; 2013 Nov; 256():108-18. PubMed ID: 23933142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep.
    Lu J; Greco MA; Shiromani P; Saper CB
    J Neurosci; 2000 May; 20(10):3830-42. PubMed ID: 10804223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of tonic and phasic events of rapid eye movement sleep following bilateral ibotenic acid injections into centralis lateralis thalamic nucleus of cats.
    Marini G; Gritti I; Mancia M
    Neuroscience; 1992 Jun; 48(4):877-88. PubMed ID: 1378577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles.
    Meeren HK; Veening JG; Möderscheim TA; Coenen AM; van Luijtelaar G
    Exp Neurol; 2009 May; 217(1):25-37. PubMed ID: 19416679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotoxic lesions of phasic pontine-wave generator cells impair retention of 2-way active avoidance memory.
    Mavanji V; Ulloor J; Saha S; Datta S
    Sleep; 2004 Nov; 27(7):1282-92. PubMed ID: 15586781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation.
    Lu J; Zhang YH; Chou TC; Gaus SE; Elmquist JK; Shiromani P; Saper CB
    J Neurosci; 2001 Jul; 21(13):4864-74. PubMed ID: 11425913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reassessment of the structural basis of the ascending arousal system.
    Fuller PM; Sherman D; Pedersen NP; Saper CB; Lu J
    J Comp Neurol; 2011 Apr; 519(5):933-56. PubMed ID: 21280045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous activity in the thalamic reticular nucleus during the sleep/wake cycle of the freely-moving rat.
    Marks GA; Roffwarg HP
    Brain Res; 1993 Oct; 623(2):241-8. PubMed ID: 8221106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression.
    Steriade M; Dossi RC; Nuñez A
    J Neurosci; 1991 Oct; 11(10):3200-17. PubMed ID: 1941080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Astrocytes grafted into rat nucleus basalis magnocellularis immediately after ibotenic acid injection fail to survive and have no effect on functional recovery.
    Fulop ZL; Lescaudron L; Geller HM; Sutton R; Stein DG
    Int J Neurosci; 1997 Aug; 90(3-4):203-22. PubMed ID: 9352428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ibotenate and 192IgG-saporin lesions of the nucleus basalis magnocellularis/substantia innominata on spontaneous sleep and wake states and on recovery sleep after sleep deprivation in rats.
    Kaur S; Junek A; Black MA; Semba K
    J Neurosci; 2008 Jan; 28(2):491-504. PubMed ID: 18184792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.