BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 11123927)

  • 21. 3'-Phosphoadenosine 5'-phosphosulfate allosterically regulates sulfotransferase turnover.
    Wang T; Cook I; Leyh TS
    Biochemistry; 2014 Nov; 53(44):6893-900. PubMed ID: 25314023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of single Mn(2+) binding sites required for activation of the mutant proteins of E.coli RNase HI at Glu48 and/or Asp134 by X-ray crystallography.
    Tsunaka Y; Takano K; Matsumura H; Yamagata Y; Kanaya S
    J Mol Biol; 2005 Feb; 345(5):1171-83. PubMed ID: 15644213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Affinity labeling of aryl sulfotransferase IV. Identification of a peptide sequence at the binding site for 3'-phosphoadenosine-5'-phosphosulfate.
    Zheng Y; Bergold A; Duffel MW
    J Biol Chem; 1994 Dec; 269(48):30313-9. PubMed ID: 7982943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of conserved aspartate and glutamate residues in the catalysis and substrate binding of maize starch synthase.
    Nichols DJ; Keeling PL; Spalding M; Guan H
    Biochemistry; 2000 Jul; 39(26):7820-5. PubMed ID: 10869188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of a human carcinogen-converting enzyme, SULT1A1. Structural and kinetic implications of substrate inhibition.
    Gamage NU; Duggleby RG; Barnett AC; Tresillian M; Latham CF; Liyou NE; McManus ME; Martin JL
    J Biol Chem; 2003 Feb; 278(9):7655-62. PubMed ID: 12471039
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of a conserved tryptophanyl residue in donor substrate binding and catalysis by a phenol sulfotransferase (SULT1A1).
    Beckmann JD; Chodavarapu S; Doyle B
    Arch Biochem Biophys; 2020 Nov; 695():108621. PubMed ID: 33049293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of carboxyl residues in pepstatin-insensitive carboxyl proteinase from Pseudomonas sp. 101 that participate in catalysis and substrate binding.
    Ito M; Narutaki S; Uchida K; Oda K
    J Biochem; 1999 Jan; 125(1):210-6. PubMed ID: 9880819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfotransferase 1A1 Substrate Selectivity: A Molecular Clamp Mechanism.
    Cook I; Wang T; Leyh TS
    Biochemistry; 2015 Oct; 54(39):6114-22. PubMed ID: 26340710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of essential histidine residues in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase: analysis by chemical modification with diethyl pyrocarbonate and site-directed mutagenesis.
    Sheflyan GY; Duewel HS; Chen G; Woodard RW
    Biochemistry; 1999 Oct; 38(43):14320-9. PubMed ID: 10572007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3'-Phosphoadenosine-5'-phosphosulfate: photoaffinity ligand for sulfotransferase enzymes.
    Otterness DM; Powers SP; Miller LJ; Weinshilboum RM
    Mol Pharmacol; 1991 Jan; 39(1):34-41. PubMed ID: 1987450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutational analysis of the substrate binding/catalytic domains of human M form and P form phenol sulfotransferases.
    Liu MC; Suiko M; Sakakibara Y
    J Biol Chem; 2000 May; 275(18):13460-4. PubMed ID: 10788459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Woodward's reagent K inactivation of Escherichia coli L-threonine dehydrogenase: increased absorbance at 340-350 nm is due to modification of cysteine and histidine residues, not aspartate or glutamate carboxyl groups.
    Johnson AR; Dekker EE
    Protein Sci; 1996 Feb; 5(2):382-90. PubMed ID: 8745417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of enzyme kinetics of phenol sulfotransferase by electrophoretically mediated microanalysis.
    Nováková S; Van Dyck S; Glatz Z; Van Schepdael A; Hoogmartens J
    J Chromatogr A; 2004 Apr; 1032(1-2):319-26. PubMed ID: 15065811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the Glu and Asp residues in the active site of human beta-hexosaminidase B.
    Hou Y; Vocadlo DJ; Leung A; Withers SG; Mahuran D
    Biochemistry; 2001 Feb; 40(7):2201-9. PubMed ID: 11329289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of expressed human phenol-sulfating phenol sulfotransferase: effect of mutating cys70 on activity and thermostability.
    Falany CN; Zhuang W; Falany JL
    Chem Biol Interact; 1994 Jun; 92(1-3):57-66. PubMed ID: 8033270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the similar spatial arrangement of active site residues in PAPS-dependent and phenolic sulfate-utilizing sulfotransferases.
    Teramoto T; Adachi R; Sakakibara Y; Liu MC; Suiko M; Kimura M; Kakuta Y
    FEBS Lett; 2009 Sep; 583(18):3091-4. PubMed ID: 19695253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation.
    Nagar S; Walther S; Blanchard RL
    Mol Pharmacol; 2006 Jun; 69(6):2084-92. PubMed ID: 16517757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The structure of the catechin-binding site of human sulfotransferase 1A1.
    Cook I; Wang T; Girvin M; Leyh TS
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14312-14317. PubMed ID: 27911811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenol sulfotransferase. II. Inactivation by phenylglyoxal, N-ethylmaleimide and ribonucleotide 2',3'-dialdehydes.
    Borchardt RT; Schasteen CS; Wu SE
    Biochim Biophys Acta; 1982 Nov; 708(3):280-93. PubMed ID: 6959651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.