BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 11123955)

  • 1. Identification of active site residues in E. coli ketopantoate reductase by mutagenesis and chemical rescue.
    Zheng R; Blanchard JS
    Biochemistry; 2000 Dec; 39(51):16244-51. PubMed ID: 11123955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and mechanistic analysis of the E. coli panE-encoded ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2000 Apr; 39(13):3708-17. PubMed ID: 10736170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of Escherichia coli ketopantoate reductase in a ternary complex with NADP+ and pantoate bound: substrate recognition, conformational change, and cooperativity.
    Ciulli A; Chirgadze DY; Smith AG; Blundell TL; Abell C
    J Biol Chem; 2007 Mar; 282(11):8487-97. PubMed ID: 17229734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of Escherichia coli ketopantoate reductase at 1.7 A resolution and insight into the enzyme mechanism.
    Matak-Vinković D; Vinković M; Saldanha SA; Ashurst JL; von Delft F; Inoue T; Miguel RN; Smith AG; Blundell TL; Abell C
    Biochemistry; 2001 Dec; 40(48):14493-500. PubMed ID: 11724562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the family 1 beta-glucosidase from Streptomyces sp: catalytic residues and kinetic studies.
    Vallmitjana M; Ferrer-Navarro M; Planell R; Abel M; Ausín C; Querol E; Planas A; Pérez-Pons JA
    Biochemistry; 2001 May; 40(20):5975-82. PubMed ID: 11352732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis as a probe of the acid-base catalytic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae.
    Lin Y; West AH; Cook PF
    Biochemistry; 2009 Aug; 48(30):7305-12. PubMed ID: 19530703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; Thomas LM; Bobyk KD; Andi B; Cook PF; West AH
    Biochemistry; 2012 Jan; 51(4):857-66. PubMed ID: 22243403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae.
    Qian J; Khandogin J; West AH; Cook PF
    Biochemistry; 2008 Jul; 47(26):6851-8. PubMed ID: 18533686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of active site residues of phosphite dehydrogenase.
    Woodyer R; Wheatley JL; Relyea HA; Rimkus S; van der Donk WA
    Biochemistry; 2005 Mar; 44(12):4765-74. PubMed ID: 15779903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of site-directed mutagenesis of the conserved aspartate and glutamate on E. coli undecaprenyl pyrophosphate synthase catalysis.
    Pan JJ; Yang LW; Liang PH
    Biochemistry; 2000 Nov; 39(45):13856-61. PubMed ID: 11076526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structure of Escherichia coli ketopantoate reductase with NADP+ bound.
    Lobley CM; Ciulli A; Whitney HM; Williams G; Smith AG; Abell C; Blundell TL
    Biochemistry; 2005 Jun; 44(25):8930-9. PubMed ID: 15966718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.
    Legler PM; Massiah MA; Mildvan AS
    Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pantothenate production in Escherichia coli K12 by enhanced expression of the panE gene encoding ketopantoate reductase.
    Elischewski F; Pühler A; Kalinowski J
    J Biotechnol; 1999 Oct; 75(2-3):135-46. PubMed ID: 10553653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structure-function study of a proton transport pathway in the gamma-class carbonic anhydrase from Methanosarcina thermophila.
    Tripp BC; Ferry JG
    Biochemistry; 2000 Aug; 39(31):9232-40. PubMed ID: 10924116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of essential histidine residues in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase: analysis by chemical modification with diethyl pyrocarbonate and site-directed mutagenesis.
    Sheflyan GY; Duewel HS; Chen G; Woodard RW
    Biochemistry; 1999 Oct; 38(43):14320-9. PubMed ID: 10572007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase on the pKa values of active site residues and on the pH dependence of catalysis.
    Czerwinski RM; Harris TK; Johnson WH; Legler PM; Stivers JT; Mildvan AS; Whitman CP
    Biochemistry; 1999 Sep; 38(38):12358-66. PubMed ID: 10493803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain.
    Zhang S; Wilson DB; Ganem B
    Biochemistry; 2000 Apr; 39(16):4722-8. PubMed ID: 10769128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.