These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11124033)

  • 1. From minichaperone to GroEL 1: information on GroEL-polypeptide interactions from crystal packing of minichaperones.
    Wang Q; Buckle AM; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):873-81. PubMed ID: 11124033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of substrate binding site of GroEL minichaperone in solution.
    Tanaka N; Fersht AR
    J Mol Biol; 1999 Sep; 292(1):173-80. PubMed ID: 10493866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL.
    Chatellier J; Hill F; Foster NW; Goloubinoff P; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):897-910. PubMed ID: 11124035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A thermophilic mini-chaperonin contains a conserved polypeptide-binding surface: combined crystallographic and NMR studies of the GroEL apical domain with implications for substrate interactions.
    Hua Q; Dementieva IS; Walsh MA; Hallenga K; Weiss MA; Joachimiak A
    J Mol Biol; 2001 Feb; 306(3):513-25. PubMed ID: 11178910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GroEL recognises sequential and non-sequential linear structural motifs compatible with extended beta-strands and alpha-helices.
    Chatellier J; Buckle AM; Fersht AR
    J Mol Biol; 1999 Sep; 292(1):163-72. PubMed ID: 10493865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of GroEL minichaperones by core and surface mutations.
    Wang Q; Buckle AM; Fersht AR
    J Mol Biol; 2000 May; 298(5):917-26. PubMed ID: 10801358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic stability and folding of GroEL minichaperones.
    Golbik R; Zahn R; Harding SE; Fersht AR
    J Mol Biol; 1998 Feb; 276(2):505-15. PubMed ID: 9512719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure.
    Chatellier J; Hill F; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):883-96. PubMed ID: 11124034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the "annealing" mechanism of GroEL minichaperone using molecular dynamics simulations.
    Stan G; Brooks BR; Thirumalai D
    J Mol Biol; 2005 Jul; 350(4):817-29. PubMed ID: 15967467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and mechanistic consequences of polypeptide binding by GroEL.
    Coyle JE; Jaeger J; Gross M; Robinson CV; Radford SE
    Fold Des; 1997; 2(6):R93-104. PubMed ID: 9427006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GroEL walks the fine line: the subtle balance of substrate and co-chaperonin binding by GroEL. A combinatorial investigation by design, selection and screening.
    Kawe M; Plückthun A
    J Mol Biol; 2006 Mar; 357(2):411-26. PubMed ID: 16427651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding of malate dehydrogenase inside the GroEL-GroES cavity.
    Chen J; Walter S; Horwich AL; Smith DL
    Nat Struct Biol; 2001 Aug; 8(8):721-8. PubMed ID: 11473265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain-specific chaperone-induced expansion is required for beta-actin folding: a comparison of beta-actin conformations upon interactions with GroEL and tail-less complex polypeptide 1 ring complex (TRiC).
    Villebeck L; Moparthi SB; Lindgren M; Hammarström P; Jonsson BH
    Biochemistry; 2007 Nov; 46(44):12639-47. PubMed ID: 17939680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding.
    Motojima F; Makio T; Aoki K; Makino Y; Kuwajima K; Yoshida M
    Biochem Biophys Res Commun; 2000 Jan; 267(3):842-9. PubMed ID: 10673379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tandem mass spectrometry of intact GroEL-substrate complexes reveals substrate-specific conformational changes in the trans ring.
    van Duijn E; Simmons DA; van den Heuvel RH; Bakkes PJ; van Heerikhuizen H; Heeren RM; Robinson CV; van der Vies SM; Heck AJ
    J Am Chem Soc; 2006 Apr; 128(14):4694-702. PubMed ID: 16594706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryo-EM structure of the native GroEL-GroES complex from thermus thermophilus encapsulating substrate inside the cavity.
    Kanno R; Koike-Takeshita A; Yokoyama K; Taguchi H; Mitsuoka K
    Structure; 2009 Feb; 17(2):287-93. PubMed ID: 19217399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of substrate recognition by the chaperonin GroEL.
    Houry WA
    Biochem Cell Biol; 2001; 79(5):569-77. PubMed ID: 11716298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural changes in GroEL effected by binding a denatured protein substrate.
    Falke S; Fisher MT; Gogol EP
    J Mol Biol; 2001 May; 308(4):569-77. PubMed ID: 11350160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary structure forming propensity coupled with amphiphilicity is an optimal motif in a peptide or protein for association with chaperonin 60 (GroEL).
    Preuss M; Hutchinson JP; Miller AD
    Biochemistry; 1999 Aug; 38(32):10272-86. PubMed ID: 10441121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR analysis of the binding of a rhodanese peptide to a minichaperone in solution.
    Kobayashi N; Freund SM; Chatellier J; Zahn R; Fersht AR
    J Mol Biol; 1999 Sep; 292(1):181-90. PubMed ID: 10493867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.