These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
460 related articles for article (PubMed ID: 11124034)
1. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure. Chatellier J; Hill F; Fersht AR J Mol Biol; 2000 Dec; 304(5):883-96. PubMed ID: 11124034 [TBL] [Abstract][Full Text] [Related]
2. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL. Chatellier J; Hill F; Foster NW; Goloubinoff P; Fersht AR J Mol Biol; 2000 Dec; 304(5):897-910. PubMed ID: 11124035 [TBL] [Abstract][Full Text] [Related]
3. Dissociation kinetics of the GroEL-gp31 chaperonin complex studied with Förster resonance energy transfer. Calmat S; Hendriks J; van Heerikhuizen H; Schmidt CF; van der Vies SM; Peterman EJ Biochemistry; 2009 Dec; 48(49):11692-8. PubMed ID: 19899806 [TBL] [Abstract][Full Text] [Related]
4. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding. Weber F; Keppel F; Georgopoulos C; Hayer-Hartl MK; Hartl FU Nat Struct Biol; 1998 Nov; 5(11):977-85. PubMed ID: 9808043 [TBL] [Abstract][Full Text] [Related]
5. Characterisation of mutations in GroES that allow GroEL to function as a single ring. Liu H; Kovács E; Lund PA FEBS Lett; 2009 Jul; 583(14):2365-71. PubMed ID: 19545569 [TBL] [Abstract][Full Text] [Related]
6. Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding. van der Vies SM; Gatenby AA; Georgopoulos C Nature; 1994 Apr; 368(6472):654-6. PubMed ID: 7908418 [TBL] [Abstract][Full Text] [Related]
7. An arginine residue (Arg101), which is conserved in many GroEL homologues, is required for interactions between the two heptameric rings. Jones S; Wallington EJ; George R; Lund PA J Mol Biol; 1998 Oct; 282(4):789-800. PubMed ID: 9743627 [TBL] [Abstract][Full Text] [Related]
8. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli. Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698 [TBL] [Abstract][Full Text] [Related]
9. GroEL walks the fine line: the subtle balance of substrate and co-chaperonin binding by GroEL. A combinatorial investigation by design, selection and screening. Kawe M; Plückthun A J Mol Biol; 2006 Mar; 357(2):411-26. PubMed ID: 16427651 [TBL] [Abstract][Full Text] [Related]
10. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle. Tehver R; Chen J; Thirumalai D J Mol Biol; 2009 Mar; 387(2):390-406. PubMed ID: 19121324 [TBL] [Abstract][Full Text] [Related]
11. In vivo activities of GroEL minichaperones. Chatellier J; Hill F; Lund PA; Fersht AR Proc Natl Acad Sci U S A; 1998 Aug; 95(17):9861-6. PubMed ID: 9707566 [TBL] [Abstract][Full Text] [Related]
12. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system. Illingworth M; Salisbury J; Li W; Lin D; Chen L Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593 [TBL] [Abstract][Full Text] [Related]
13. An expanded protein folding cage in the GroEL-gp31 complex. Clare DK; Bakkes PJ; van Heerikhuizen H; van der Vies SM; Saibil HR J Mol Biol; 2006 May; 358(3):905-11. PubMed ID: 16549073 [TBL] [Abstract][Full Text] [Related]
14. Folding of malate dehydrogenase inside the GroEL-GroES cavity. Chen J; Walter S; Horwich AL; Smith DL Nat Struct Biol; 2001 Aug; 8(8):721-8. PubMed ID: 11473265 [TBL] [Abstract][Full Text] [Related]
15. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Xu Z; Horwich AL; Sigler PB Nature; 1997 Aug; 388(6644):741-50. PubMed ID: 9285585 [TBL] [Abstract][Full Text] [Related]
16. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Rye HS; Burston SG; Fenton WA; Beechem JM; Xu Z; Sigler PB; Horwich AL Nature; 1997 Aug; 388(6644):792-8. PubMed ID: 9285593 [TBL] [Abstract][Full Text] [Related]
17. Pseudo-T-even bacteriophage RB49 encodes CocO, a cochaperonin for GroEL, which can substitute for Escherichia coli's GroES and bacteriophage T4's Gp31. Ang D; Richardson A; Mayer MP; Keppel F; Krisch H; Georgopoulos C J Biol Chem; 2001 Mar; 276(12):8720-6. PubMed ID: 11104767 [TBL] [Abstract][Full Text] [Related]
18. Identification of nucleotide-binding regions in the chaperonin proteins GroEL and GroES. Martin J; Geromanos S; Tempst P; Hartl FU Nature; 1993 Nov; 366(6452):279-82. PubMed ID: 7901771 [TBL] [Abstract][Full Text] [Related]
19. Identification of substrate binding site of GroEL minichaperone in solution. Tanaka N; Fersht AR J Mol Biol; 1999 Sep; 292(1):173-80. PubMed ID: 10493866 [TBL] [Abstract][Full Text] [Related]