BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 11124260)

  • 1. Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity.
    Le Du MH; Stigbrand T; Taussig MJ; Menez A; Stura EA
    J Biol Chem; 2001 Mar; 276(12):9158-65. PubMed ID: 11124260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alkaline phosphatase.
    Hoylaerts MF; Manes T; Millán JL
    Biochem J; 1992 Aug; 286 ( Pt 1)(Pt 1):23-30. PubMed ID: 1520273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-directed mutagenesis and epitope-mapped monoclonal antibodies define a catalytically important conformational difference between human placental and germ cell alkaline phosphatase.
    Hoylaerts MF; Millán JL
    Eur J Biochem; 1991 Dec; 202(2):605-16. PubMed ID: 1722150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural studies of human placental alkaline phosphatase in complex with functional ligands.
    Llinas P; Stura EA; Ménez A; Kiss Z; Stigbrand T; Millán JL; Le Du MH
    J Mol Biol; 2005 Jul; 350(3):441-51. PubMed ID: 15946677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment.
    Hoylaerts MF; Ding L; Narisawa S; Van Kerckhoven S; Millan JL
    Biochemistry; 2006 Aug; 45(32):9756-66. PubMed ID: 16893177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function assignment to conserved residues in mammalian alkaline phosphatases.
    Kozlenkov A; Manes T; Hoylaerts MF; Millán JL
    J Biol Chem; 2002 Jun; 277(25):22992-9. PubMed ID: 11937510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray structure reveals a new class and provides insight into evolution of alkaline phosphatases.
    Bihani SC; Das A; Nilgiriwala KS; Prashar V; Pirocchi M; Apte SK; Ferrer JL; Hosur MV
    PLoS One; 2011; 6(7):e22767. PubMed ID: 21829507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 1.4 A crystal structure of the large and cold-active Vibrio sp. alkaline phosphatase.
    Helland R; Larsen RL; Asgeirsson B
    Biochim Biophys Acta; 2009 Feb; 1794(2):297-308. PubMed ID: 18977465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of rat intestinal alkaline phosphatase--role of crown domain in mammalian alkaline phosphatases.
    Ghosh K; Mazumder Tagore D; Anumula R; Lakshmaiah B; Kumar PP; Singaram S; Matan T; Kallipatti S; Selvam S; Krishnamurthy P; Ramarao M
    J Struct Biol; 2013 Nov; 184(2):182-92. PubMed ID: 24076154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian alkaline phosphatases are allosteric enzymes.
    Hoylaerts MF; Manes T; Millán JL
    J Biol Chem; 1997 Sep; 272(36):22781-7. PubMed ID: 9278439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the active site of the placental isozyme of alkaline phosphatase by phage-displayed scFv antibodies selected by a specific uncompetitive inhibitor.
    Saini D; Kala M; Jain V; Sinha S
    BMC Biotechnol; 2005 Dec; 5():33. PubMed ID: 16372914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural evidence of functional divergence in human alkaline phosphatases.
    Le Du MH; Millan JL
    J Biol Chem; 2002 Dec; 277(51):49808-14. PubMed ID: 12372831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization.
    Mornet E; Stura E; Lia-Baldini AS; Stigbrand T; Ménez A; Le Du MH
    J Biol Chem; 2001 Aug; 276(33):31171-8. PubMed ID: 11395499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of a human lysosomal sulfatase.
    Bond CS; Clements PR; Ashby SJ; Collyer CA; Harrop SJ; Hopwood JJ; Guss JM
    Structure; 1997 Feb; 5(2):277-89. PubMed ID: 9032078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, sequencing, and chromosomal localization of human term placental alkaline phosphatase cDNA.
    Kam W; Clauser E; Kim YS; Kan YW; Rutter WJ
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8715-9. PubMed ID: 3001717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific mutations in the COOH-terminus of placental alkaline phosphatase: a single amino acid change converts a phosphatidylinositol-glycan-anchored protein to a secreted protein.
    Lowe ME
    J Cell Biol; 1992 Feb; 116(3):799-807. PubMed ID: 1730777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic activity of human placental alkaline phosphatase (PLAP): insights from a computational study.
    Borosky GL
    J Phys Chem B; 2014 Dec; 118(49):14302-13. PubMed ID: 25409280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectivity of the cleavage/attachment site of phosphatidylinositol-glycan-anchored membrane proteins determined by site-specific mutagenesis at Asp-484 of placental alkaline phosphatase.
    Micanovic R; Gerber LD; Berger J; Kodukula K; Udenfriend S
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):157-61. PubMed ID: 2153284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Placental alkaline phosphatase as the placental IgG receptor.
    Makiya R; Stigbrand T
    Clin Chem; 1992 Dec; 38(12):2543-5. PubMed ID: 1458596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid sequence of the cold-active alkaline phosphatase from Atlantic cod (Gadus morhua).
    Asgeirsson B; Nielsen BN; Højrup P
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Sep; 136(1):45-60. PubMed ID: 12941638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.