BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 11124260)

  • 21. Modifications in a flexible surface loop modulate the isozyme-specific properties of mammalian alkaline phosphatases.
    Bossi M; Hoylaerts MF; Millán JL
    J Biol Chem; 1993 Dec; 268(34):25409-16. PubMed ID: 8244974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular cloning and sequence analysis of human placental alkaline phosphatase.
    Millán JL
    J Biol Chem; 1986 Mar; 261(7):3112-5. PubMed ID: 3512548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases.
    Murphy JE; Tibbitts TT; Kantrowitz ER
    J Mol Biol; 1995 Nov; 253(4):604-17. PubMed ID: 7473737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Placental alkaline phosphatase integrates via its carboxy-terminus into the microvillous membrane: its allotypes differ in conformation.
    Abu-Hasan NS; Sutcliffe RG
    Placenta; 1985; 6(5):391-404. PubMed ID: 3906624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of structural and catalytic differences in rat intestinal alkaline phosphatase isozymes.
    Harada T; Koyama I; Matsunaga T; Kikuno A; Kasahara T; Hassimoto M; Alpers DH; Komoda T
    FEBS J; 2005 May; 272(10):2477-86. PubMed ID: 15885097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5.
    Wang E; Koutsioulis D; Leiros HK; Andersen OA; Bouriotis V; Hough E; Heikinheimo P
    J Mol Biol; 2007 Mar; 366(4):1318-31. PubMed ID: 17198711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of a NifS homologue: X-ray structure analysis of CsdB, an Escherichia coli counterpart of mammalian selenocysteine lyase.
    Fujii T; Maeda M; Mihara H; Kurihara T; Esaki N; Hata Y
    Biochemistry; 2000 Feb; 39(6):1263-73. PubMed ID: 10684605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A revised mechanism for the alkaline phosphatase reaction involving three metal ions.
    Stec B; Holtz KM; Kantrowitz ER
    J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.
    Sunden F; AlSadhan I; Lyubimov A; Doukov T; Swan J; Herschlag D
    J Biol Chem; 2017 Dec; 292(51):20960-20974. PubMed ID: 29070681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase.
    Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC
    J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis.
    Kim EE; Wyckoff HW
    J Mol Biol; 1991 Mar; 218(2):449-64. PubMed ID: 2010919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of human estrogenic 17 beta-hydroxysteroid dehydrogenase at 2.20 A resolution.
    Ghosh D; Pletnev VZ; Zhu DW; Wawrzak Z; Duax WL; Pangborn W; Labrie F; Lin SX
    Structure; 1995 May; 3(5):503-13. PubMed ID: 7663947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of an ATP-dependent carboxylase, dethiobiotin synthetase, based on crystallographic studies of complexes with substrates and a reaction intermediate.
    Huang W; Jia J; Gibson KJ; Taylor WS; Rendina AR; Schneider G; Lindqvist Y
    Biochemistry; 1995 Sep; 34(35):10985-95. PubMed ID: 7669756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conversion of secretory proteins into membrane proteins by fusing with a glycosylphosphatidylinositol anchor signal of alkaline phosphatase.
    Oda K; Cheng J; Saku T; Takami N; Sohda M; Misumi Y; Ikehara Y; Millán JL
    Biochem J; 1994 Jul; 301 ( Pt 2)(Pt 2):577-83. PubMed ID: 7519012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Residues determining the binding specificity of uncompetitive inhibitors to tissue-nonspecific alkaline phosphatase.
    Kozlenkov A; Le Du MH; Cuniasse P; Ny T; Hoylaerts MF; Millán JL
    J Bone Miner Res; 2004 Nov; 19(11):1862-72. PubMed ID: 15476587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of Escherichia coli pyruvate kinase type I: molecular basis of the allosteric transition.
    Mattevi A; Valentini G; Rizzi M; Speranza ML; Bolognesi M; Coda A
    Structure; 1995 Jul; 3(7):729-41. PubMed ID: 8591049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli.
    Tanaka N; Nonaka T; Tanabe T; Yoshimoto T; Tsuru D; Mitsui Y
    Biochemistry; 1996 Jun; 35(24):7715-30. PubMed ID: 8672472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alkaline Phosphatases:
    Borosky GL
    J Chem Inf Model; 2020 Dec; 60(12):6228-6241. PubMed ID: 33306371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.