These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 11124377)
1. Fluidised bed drying of soybeans. Soponronnarit S; Swasdisevi T; Wetchacama S; Wutiwiwatchai W J Stored Prod Res; 2001 Apr; 37(2):133-151. PubMed ID: 11124377 [TBL] [Abstract][Full Text] [Related]
2. Effects of microwave - fluidized bed drying on quality, energy consumption and drying kinetics of soybean kernels. Khoshtaghaza MH; Darvishi H; Minaei S J Food Sci Technol; 2015 Aug; 52(8):4749-60. PubMed ID: 26243896 [TBL] [Abstract][Full Text] [Related]
3. Modelling and experimental analysis of rice drying in new fluidized bed assisted hybrid infrared-microwave dryer. Nanvakenari S; Movagharnejad K; Latifi A Food Res Int; 2022 Sep; 159():111617. PubMed ID: 35940808 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of potato drying using fluidized bed dryer. Bakal SB; Sharma GP; Sonawane SP; Verma RC J Food Sci Technol; 2012 Oct; 49(5):608-13. PubMed ID: 24082273 [TBL] [Abstract][Full Text] [Related]
5. Dry formulations of the biocontrol agent Candida sake CPA-1 using fluidised bed drying to control the main postharvest diseases on fruits. Carbó A; Torres R; Usall J; Fons E; Teixidó N J Sci Food Agric; 2017 Aug; 97(11):3691-3698. PubMed ID: 28111760 [TBL] [Abstract][Full Text] [Related]
6. Development of a New Model for Mass Transfer Kinetics of Petals of Nadi F Food Technol Biotechnol; 2016 Jun; 54(2):217-227. PubMed ID: 27904412 [TBL] [Abstract][Full Text] [Related]
7. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology. Kumar D; Prasad S; Murthy GS J Food Sci Technol; 2014 Feb; 51(2):221-32. PubMed ID: 24493879 [TBL] [Abstract][Full Text] [Related]
8. Breakage and drying behaviour of granules in a continuous fluid bed dryer: Influence of process parameters and wet granule transfer. De Leersnyder F; Vanhoorne V; Bekaert H; Vercruysse J; Ghijs M; Bostijn N; Verstraeten M; Cappuyns P; Van Assche I; Vander Heyden Y; Ziemons E; Remon JP; Nopens I; Vervaet C; De Beer T Eur J Pharm Sci; 2018 Mar; 115():223-232. PubMed ID: 29374528 [TBL] [Abstract][Full Text] [Related]
9. Modeling moisture diffusivity, activation energy and specific energy consumption of squash seeds in a semi fluidized and fluidized bed drying. Chayjan RA; Salari K; Abedi Q; Sabziparvar AA J Food Sci Technol; 2013 Aug; 50(4):667-77. PubMed ID: 24425968 [TBL] [Abstract][Full Text] [Related]
10. Effect of Drying Temperatures on the Peanut Quality during Hot Air Drying. Qu C; Wang X; Wang Z; Yu S; Wang D J Oleo Sci; 2020 May; 69(5):403-412. PubMed ID: 32281561 [TBL] [Abstract][Full Text] [Related]
11. The effect of air fluidised bed therapy on hypermetabolism in intensive care unit patients. Blackwood B; McLeod HN; Lavery GG; Hayes EE; Rowlands BJ; Clarke RS Intensive Crit Care Nurs; 1996 Aug; 12(4):200-6. PubMed ID: 8932015 [TBL] [Abstract][Full Text] [Related]
12. Optimization of soybean heat-treating using a fluidized bed dryer. Martínez ML; Marín MA; Ribotta PD J Food Sci Technol; 2013 Dec; 50(6):1144-50. PubMed ID: 24426027 [TBL] [Abstract][Full Text] [Related]
13. Comparison of quality and microstructure of chokeberry powders prepared by different drying methods, including innovative fluidised bed jet milling and drying. Sadowska A; Świderski F; Rakowska R; Hallmann E Food Sci Biotechnol; 2019 Aug; 28(4):1073-1081. PubMed ID: 31275707 [TBL] [Abstract][Full Text] [Related]
14. Experimental determination of viability loss of Penicillium bilaiae conidia during convective air-drying. Friesen T; Hill G; Pugsley T; Holloway G; Zimmerman D Appl Microbiol Biotechnol; 2005 Aug; 68(3):397-404. PubMed ID: 15660217 [TBL] [Abstract][Full Text] [Related]
15. Theoretical Analysis and Optimization of Fine Lignite Drying and Separation with a Pulsed Fluidized Bed. Sheng C; Zhao Y; Duan C; Dong L; Zhang P ACS Omega; 2020 Nov; 5(45):29199-29208. PubMed ID: 33225151 [TBL] [Abstract][Full Text] [Related]
16. Energy and Exergy Analyses of Rice Drying in a Novel Electric Stationary Bed Grain-Drying System with Internal Circulation of the Drying Medium. Wang G; Wu W; Fu D; Xu W; Xu Y; Zhang Y Foods; 2021 Dec; 11(1):. PubMed ID: 35010228 [TBL] [Abstract][Full Text] [Related]
17. Deep bed rough rice air-drying assisted with airborne ultrasound set at 21 kHz frequency: A physicochemical investigation and optimization. Dibagar N; Chayjan RA; Kowalski SJ; Peyman SH Ultrason Sonochem; 2019 May; 53():25-43. PubMed ID: 30594523 [TBL] [Abstract][Full Text] [Related]
18. Mathematical modeling and multivariate analysis applied earliest soybean harvest associated drying and storage conditions and influences on physicochemical grain quality. Lima RE; Coradi PC; Nunes MT; Bellochio SDC; da Silva Timm N; Nunes CF; de Oliveira Carneiro L; Teodoro PE; Campabadal C Sci Rep; 2021 Dec; 11(1):23287. PubMed ID: 34857813 [TBL] [Abstract][Full Text] [Related]
19. Microwave assisted fluidized bed drying of bitter gourd: Modelling and optimization of process conditions based on bioactive components. Zahoor I; Dar AH; Dash KK; Pandiselvam R; Rusu AV; Trif M; Singh P; Jeevarathinam G Food Chem X; 2023 Mar; 17():100565. PubMed ID: 36845471 [TBL] [Abstract][Full Text] [Related]
20. Microwave drying of granules containing a moisture-sensitive drug: a promising alternative to fluid bed and hot air oven drying. Chee SN; Johansen AL; Gu L; Karlsen J; Heng PW Chem Pharm Bull (Tokyo); 2005 Jul; 53(7):770-5. PubMed ID: 15997132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]