These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11124979)

  • 1. Bistable behavior of inhibitory neurons controlling impulse traffic through the amygdala: role of a slowly deinactivating K+ current.
    Royer S; Martina M; Pare D
    J Neurosci; 2000 Dec; 20(24):9034-9. PubMed ID: 11124979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An inhibitory interface gates impulse traffic between the input and output stations of the amygdala.
    Royer S; Martina M; Paré D
    J Neurosci; 1999 Dec; 19(23):10575-83. PubMed ID: 10575053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SK channel regulation of dendritic excitability and dendrodendritic inhibition in the olfactory bulb.
    Maher BJ; Westbrook GL
    J Neurophysiol; 2005 Dec; 94(6):3743-50. PubMed ID: 16107526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons.
    Bennett BD; Callaway JC; Wilson CJ
    J Neurosci; 2000 Nov; 20(22):8493-503. PubMed ID: 11069957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine modulates excitability of basolateral amygdala neurons in vitro.
    Kröner S; Rosenkranz JA; Grace AA; Barrionuevo G
    J Neurophysiol; 2005 Mar; 93(3):1598-610. PubMed ID: 15537813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pentobarbital modulates intrinsic and GABA-receptor conductances in thalamocortical inhibition.
    Wan X; Mathers DA; Puil E
    Neuroscience; 2003; 121(4):947-58. PubMed ID: 14580945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contextual inhibitory gating of impulse traffic in the intra-amygdaloid network.
    Paré D; Royer S; Smith Y; Lang EJ
    Ann N Y Acad Sci; 2003 Apr; 985():78-91. PubMed ID: 12724150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological role of calcium-activated potassium currents in the rat lateral amygdala.
    Faber ES; Sah P
    J Neurosci; 2002 Mar; 22(5):1618-28. PubMed ID: 11880492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells.
    Liu X; Stan Leung L
    Brain Res; 2004 Oct; 1023(2):185-92. PubMed ID: 15374744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat.
    Sivaramakrishnan S; Oliver DL
    J Neurosci; 2001 Apr; 21(8):2861-77. PubMed ID: 11306638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons.
    Raman IM; Bean BP
    J Neurosci; 1999 Mar; 19(5):1663-74. PubMed ID: 10024353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonergic inhibition of action potential evoked calcium transients in NOS-containing mesopontine cholinergic neurons.
    Leonard CS; Rao SR; Inoue T
    J Neurophysiol; 2000 Sep; 84(3):1558-72. PubMed ID: 10980027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei.
    Raman IM; Gustafson AE; Padgett D
    J Neurosci; 2000 Dec; 20(24):9004-16. PubMed ID: 11124976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noradrenergic excitation of a subpopulation of GABAergic cells in the basolateral amygdala via both activation of nonselective cationic conductance and suppression of resting K+ conductance: a study using glutamate decarboxylase 67-green fluorescent protein knock-in mice.
    Kaneko K; Tamamaki N; Owada H; Kakizaki T; Kume N; Totsuka M; Yamamoto T; Yawo H; Yagi T; Obata K; Yanagawa Y
    Neuroscience; 2008 Dec; 157(4):781-97. PubMed ID: 18950687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarized synaptic interactions between intercalated neurons of the amygdala.
    Royer S; Martina M; Paré D
    J Neurophysiol; 2000 Jun; 83(6):3509-18. PubMed ID: 10848566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium currents during the action potential of hippocampal CA3 neurons.
    Mitterdorfer J; Bean BP
    J Neurosci; 2002 Dec; 22(23):10106-15. PubMed ID: 12451111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical characterization of rat caudal hypothalamic neurons: calcium channel contribution to excitability.
    Fan YP; Horn EM; Waldrop TG
    J Neurophysiol; 2000 Dec; 84(6):2896-903. PubMed ID: 11110819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent roles of calcium and voltage-dependent potassium currents in controlling spike frequency adaptation in lateral amygdala pyramidal neurons.
    Faber ES; Sah P
    Eur J Neurosci; 2005 Oct; 22(7):1627-35. PubMed ID: 16197503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-Amyloid peptide25-35 depresses excitatory synaptic transmission in the rat basolateral amygdala "in vitro".
    Ashenafi S; Fuente A; Criado JM; Riolobos AS; Heredia M; Yajeya J
    Neurobiol Aging; 2005 Apr; 26(4):419-28. PubMed ID: 15653170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.