These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 11125014)

  • 1. The dynamic range for gain control of NMDA receptor-mediated synaptic transmission at a single synapse.
    Wang LY
    J Neurosci; 2000 Dec; 20(24):RC115. PubMed ID: 11125014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimizing synaptic depression by control of release probability.
    Brenowitz S; Trussell LO
    J Neurosci; 2001 Mar; 21(6):1857-67. PubMed ID: 11245670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental depression of glutamate neurotransmission by chronic low-level activation of NMDA receptors.
    Shi J; Aamodt SM; Townsend M; Constantine-Paton M
    J Neurosci; 2001 Aug; 21(16):6233-44. PubMed ID: 11487646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diminished neuronal activity increases neuron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses.
    Nakayama K; Kiyosue K; Taguchi T
    J Neurosci; 2005 Apr; 25(16):4040-51. PubMed ID: 15843606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity.
    Taschenberger H; von Gersdorff H
    J Neurosci; 2000 Dec; 20(24):9162-73. PubMed ID: 11124994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental increase in vesicular glutamate content does not cause saturation of AMPA receptors at the calyx of Held synapse.
    Yamashita T; Ishikawa T; Takahashi T
    J Neurosci; 2003 May; 23(9):3633-8. PubMed ID: 12736334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative relationship between transmitter release and calcium current at the calyx of held synapse.
    Sakaba T; Neher E
    J Neurosci; 2001 Jan; 21(2):462-76. PubMed ID: 11160426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse.
    Clark BA; Cull-Candy SG
    J Neurosci; 2002 Jun; 22(11):4428-36. PubMed ID: 12040050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of the C-terminal domain of the NR2B subunit alters channel properties and synaptic targeting of N-methyl-D-aspartate receptors in nascent neocortical synapses.
    Mohrmann R; Köhr G; Hatt H; Sprengel R; Gottmann K
    J Neurosci Res; 2002 May; 68(3):265-75. PubMed ID: 12111856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of paired-pulse facilitation of AMPA and NMDA synaptic currents in the lateral amygdala.
    Zinebi F; Russell RT; McKernan M; Shinnick-Gallagher P
    Synapse; 2001 Nov; 42(2):115-27. PubMed ID: 11574948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms regulating spill-over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons.
    Wild AR; Bollands M; Morris PG; Jones S
    Eur J Neurosci; 2015 Nov; 42(9):2633-43. PubMed ID: 26370007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains.
    Wong AY; Graham BP; Billups B; Forsythe ID
    J Neurosci; 2003 Jun; 23(12):4868-77. PubMed ID: 12832509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NR2B-containing receptors mediate cross talk among hippocampal synapses.
    Scimemi A; Fine A; Kullmann DM; Rusakov DA
    J Neurosci; 2004 May; 24(20):4767-77. PubMed ID: 15152037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coincident activation of metabotropic glutamate receptors and NMDA receptors (NMDARs) downregulates perisynaptic/extrasynaptic NMDARs and enhances high-fidelity neurotransmission at the developing calyx of Held synapse.
    Joshi I; Yang YM; Wang LY
    J Neurosci; 2007 Sep; 27(37):9989-99. PubMed ID: 17855613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological activation of presynaptic metabotropic glutamate receptors increases intracellular calcium and glutamate release.
    Schwartz NE; Alford S
    J Neurophysiol; 2000 Jul; 84(1):415-27. PubMed ID: 10899215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of N-methyl-D-aspartate receptor channels and N-methyl-D-aspartate receptor excitatory postsynaptic currents.
    Korinek M; Sedlacek M; Cais O; Dittert I; Vyklicky L
    Neuroscience; 2010 Feb; 165(3):736-48. PubMed ID: 19883737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of extrasynaptic NMDA receptors induces a PKC-dependent switch in AMPA receptor subtypes in mouse cerebellar stellate cells.
    Sun L; June Liu S
    J Physiol; 2007 Sep; 583(Pt 2):537-53. PubMed ID: 17584840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina.
    Chen S; Diamond JS
    J Neurosci; 2002 Mar; 22(6):2165-73. PubMed ID: 11896156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor.
    Mizuno T; Kanazawa I; Sakurai M
    Eur J Neurosci; 2001 Aug; 14(4):701-8. PubMed ID: 11556894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vesicular glutamate filling and AMPA receptor occupancy at the calyx of Held synapse of immature rats.
    Yamashita T; Kanda T; Eguchi K; Takahashi T
    J Physiol; 2009 May; 587(Pt 10):2327-39. PubMed ID: 19332485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.