These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11125063)

  • 1. PlantsP: a functional genomics database for plant phosphorylation.
    Gribskov M; Fana F; Harper J; Hope DA; Harmon AC; Smith DW; Tax FE; Zhang G
    Nucleic Acids Res; 2001 Jan; 29(1):111-3. PubMed ID: 11125063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The PlantsP and PlantsT Functional Genomics Databases.
    Tchieu JH; Fana F; Fink JL; Harper J; Nair TM; Niedner RH; Smith DW; Steube K; Tam TM; Veretnik S; Wang D; Gribskov M
    Nucleic Acids Res; 2003 Jan; 31(1):342-4. PubMed ID: 12520018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database.
    Nühse TS; Stensballe A; Jensen ON; Peck SC
    Plant Cell; 2004 Sep; 16(9):2394-405. PubMed ID: 15308754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphatase ABI1 and okadaic acid-sensitive phosphoprotein phosphatases inhibit salt stress-activated SnRK2.4 kinase.
    Krzywińska E; Bucholc M; Kulik A; Ciesielski A; Lichocka M; Dębski J; Ludwików A; Dadlez M; Rodriguez PL; Dobrowolska G
    BMC Plant Biol; 2016 Jun; 16(1):136. PubMed ID: 27297076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the GABI-Kat Arabidopsis thaliana T-DNA Insertion Mutant Database by Incorporating Araport11 Annotation.
    Kleinboelting N; Huep G; Weisshaar B
    Plant Cell Physiol; 2017 Jan; 58(1):e7. PubMed ID: 28013277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase::protein phosphatase involved in the regulation of the ascorbic acid pool in plants.
    Conklin PL; DePaolo D; Wintle B; Schatz C; Buckenmeyer G
    J Exp Bot; 2013 Jul; 64(10):2793-804. PubMed ID: 23749562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATIDB: Arabidopsis thaliana insertion database.
    Pan X; Liu H; Clarke J; Jones J; Bevan M; Stein L
    Nucleic Acids Res; 2003 Feb; 31(4):1245-51. PubMed ID: 12582244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional genomics of protein kinases in plants.
    Chevalier D; Walker JC
    Brief Funct Genomic Proteomic; 2005 Feb; 3(4):362-71. PubMed ID: 15814026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatases in plants.
    Schweighofer A; Meskiene I
    Methods Mol Biol; 2015; 1306():25-46. PubMed ID: 25930691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinases and protein phosphatases in prokaryotes: a genomic perspective.
    Kennelly PJ
    FEMS Microbiol Lett; 2002 Jan; 206(1):1-8. PubMed ID: 11786249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-scale discovery and characterization of class-specific protein sequences: an example using the protein phosphatases of Arabidopsis thaliana.
    Kerk D
    Methods Mol Biol; 2007; 365():347-70. PubMed ID: 17200574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EKPD: a hierarchical database of eukaryotic protein kinases and protein phosphatases.
    Wang Y; Liu Z; Cheng H; Gao T; Pan Z; Yang Q; Guo A; Xue Y
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D496-502. PubMed ID: 24214991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The salinity tolerant poplar database (STPD): a comprehensive database for studying tree salt-tolerant adaption and poplar genomics.
    Ma Y; Xu T; Wan D; Ma T; Shi S; Liu J; Hu Q
    BMC Genomics; 2015 Mar; 16(1):205. PubMed ID: 25881271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants.
    Kerk D; Templeton G; Moorhead GB
    Plant Physiol; 2008 Feb; 146(2):351-67. PubMed ID: 18156295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide biochemical analysis of Arabidopsis protein phosphatase using a wheat cell-free system.
    Takahashi H; Ozawa A; Nemoto K; Nozawa A; Seki M; Shinozaki K; Takeda H; Endo Y; Sawasaki T
    FEBS Lett; 2012 Sep; 586(19):3134-41. PubMed ID: 22968126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38.
    Pesaresi P; Pribil M; Wunder T; Leister D
    Biochim Biophys Acta; 2011 Aug; 1807(8):887-96. PubMed ID: 20728426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14lambda and the PP2C phosphatase KAPP.
    Rienties IM; Vink J; Borst JW; Russinova E; de Vries SC
    Planta; 2005 Jun; 221(3):394-405. PubMed ID: 15592873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PlantCARE, a plant cis-acting regulatory element database.
    Rombauts S; Déhais P; Van Montagu M; Rouzé P
    Nucleic Acids Res; 1999 Jan; 27(1):295-6. PubMed ID: 9847207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate analysis of Arabidopsis PP2C-type protein phosphatases.
    Umbrasaite J; Schweighofer A; Meskiene I
    Methods Mol Biol; 2011; 779():149-61. PubMed ID: 21837565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of Abscisic Acid Signaling from the Receptor to DNA via bHLH Transcription Factors.
    Takahashi Y; Ebisu Y; Shimazaki KI
    Plant Physiol; 2017 Jun; 174(2):815-822. PubMed ID: 28438792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.