These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 11125105)

  • 1. SpliceDB: database of canonical and non-canonical mammalian splice sites.
    Burset M; Seledtsov IA; Solovyev VV
    Nucleic Acids Res; 2001 Jan; 29(1):255-9. PubMed ID: 11125105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of canonical and non-canonical splice sites in mammalian genomes.
    Burset M; Seledtsov IA; Solovyev VV
    Nucleic Acids Res; 2000 Nov; 28(21):4364-75. PubMed ID: 11058137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of splice site probability models for non-canonical introns improves gene structure prediction in plants.
    Sparks ME; Brendel V
    Bioinformatics; 2005 Nov; 21 Suppl 3():iii20-30. PubMed ID: 16306388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analyses supported by RNA-Seq reveal non-canonical splice sites in plant genomes.
    Pucker B; Brockington SF
    BMC Genomics; 2018 Dec; 19(1):980. PubMed ID: 30594132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Information for the Coordinates of Exons (ICE): a human splice sites database.
    Chong A; Zhang G; Bajic VB
    Genomics; 2004 Oct; 84(4):762-6. PubMed ID: 15475254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FELINES: a utility for extracting and examining EST-defined introns and exons.
    Drabenstot SD; Kupfer DM; White JD; Dyer DW; Roe BA; Buchanan KL; Murphy JW
    Nucleic Acids Res; 2003 Nov; 31(22):e141. PubMed ID: 14602934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal, Fungi, and Plant Genome Sequences Harbor Different Non-Canonical Splice Sites.
    Frey K; Pucker B
    Cells; 2020 Feb; 9(2):. PubMed ID: 32085510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. INFOGENE: a database of known gene structures and predicted genes and proteins in sequences of genome sequencing projects.
    Solovyev VV; Salamov AA
    Nucleic Acids Res; 1999 Jan; 27(1):248-50. PubMed ID: 9847192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AsMamDB: an alternative splice database of mammals.
    Ji H; Zhou Q; Wen F; Xia H; Lu X; Li Y
    Nucleic Acids Res; 2001 Jan; 29(1):260-3. PubMed ID: 11125106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ASD: the Alternative Splicing Database.
    Thanaraj TA; Stamm S; Clark F; Riethoven JJ; Le Texier V; Muilu J
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D64-9. PubMed ID: 14681360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SpliceFinder: ab initio prediction of splice sites using convolutional neural network.
    Wang R; Wang Z; Wang J; Li S
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):652. PubMed ID: 31881982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First estimate of the scale of canonical 5' splice site GT>GC variants capable of generating wild-type transcripts.
    Lin JH; Tang XY; Boulling A; Zou WB; Masson E; Fichou Y; Raud L; Le Tertre M; Deng SJ; Berlivet I; Ka C; Mort M; Hayden M; Leman R; Houdayer C; Le Gac G; Cooper DN; Li ZS; Férec C; Liao Z; Chen JM
    Hum Mutat; 2019 Oct; 40(10):1856-1873. PubMed ID: 31131953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information.
    Hebsgaard SM; Korning PG; Tolstrup N; Engelbrecht J; Rouzé P; Brunak S
    Nucleic Acids Res; 1996 Sep; 24(17):3439-52. PubMed ID: 8811101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions.
    Thanaraj TA; Clark F
    Nucleic Acids Res; 2001 Jun; 29(12):2581-93. PubMed ID: 11410667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames.
    Solovyev VV; Salamov AA; Lawrence CB
    Nucleic Acids Res; 1994 Dec; 22(24):5156-63. PubMed ID: 7816600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleaning the GenBank Arabidopsis thaliana data set.
    Korning PG; Hebsgaard SM; Rouze P; Brunak S
    Nucleic Acids Res; 1996 Jan; 24(2):316-20. PubMed ID: 8628656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of genome-wide non-canonical spliced regions and analysis of biological functions for spliced sequences using Read-Split-Fly.
    Bai Y; Kinne J; Ding L; Rath EC; Cox A; Naidu SD
    BMC Bioinformatics; 2017 Oct; 18(Suppl 11):382. PubMed ID: 28984182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.