BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 11126)

  • 1. Effect of lysolecithin of guanylate and adenylate cyclase activities in neuroblastoma cells in culture.
    Zwiller J; Ciesielski-Treska J; Mandel P
    FEBS Lett; 1976 Oct; 69(1):286-90. PubMed ID: 11126
    [No Abstract]   [Full Text] [Related]  

  • 2. Cyclic nucleotides and platelet aggregation. Effect of aggregating agents on the activity of cyclic nucleotide-metabolizing enzymes.
    Barber AJ
    Biochim Biophys Acta; 1976 Sep; 444(2):579-95. PubMed ID: 9149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of lysolecithin on adenylate cyclase and guanylate cyclase activities in bovine adrenal medullary plasma membranes.
    Aunis D; Pescheloche M; Zwiller J; Mandel P
    J Neurochem; 1978 Jul; 31(1):355-7. PubMed ID: 27589
    [No Abstract]   [Full Text] [Related]  

  • 4. Protein activator of cyclic 3':5'-nucleotide phosphodiesterase of bovine or rat brain also activates its adenylate cyclase.
    Cheung WY; Bradham LS; Lynch TJ; Lin YM; Tallant EA
    Biochem Biophys Res Commun; 1975 Oct; 66(3):1055-62. PubMed ID: 170936
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of adenylate cyclase inhibitor (ACI) on guanylate cyclase, phosphodiesterase and other enzymes in heart.
    Lehotay DC; Levey GS; Vesely DL; Bornet EP; Ray MV; Entman ML; Schwartz A
    J Cyclic Nucleotide Res; 1977 Feb; 3(1):55-65. PubMed ID: 14979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of morphine sulfate on adenylate cyclase and phosphodiesterase activities in rat corpus striatum.
    Puri SK; Cochin J; Volicer L
    Life Sci; 1975 Mar; 16(5):759-67. PubMed ID: 164598
    [No Abstract]   [Full Text] [Related]  

  • 7. Neuroblastoma cell adenylate cyclase: direct activation by adenosine and prostaglandins.
    Penit J; Huot J; Jard S
    J Neurochem; 1976 Feb; 26(2):265-73. PubMed ID: 176321
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on cyclic adenosine 3' ,5'-monophosphate levels, Adenylate cyclase and phosphodiesterase activities in the dimorphic fungus Mucor rouxii.
    Paveto C; Epstein A; Passeron S
    Arch Biochem Biophys; 1975 Aug; 169(2):449-57. PubMed ID: 170864
    [No Abstract]   [Full Text] [Related]  

  • 9. Correlation between adenosine 3',5'-cyclic monosphosphate levels, adenylate cyclase activity, and adenosine 3',5'-cyclic monophosphate phosphodiesterase activity in tissue culture cells stimulated by serum.
    Matsumoto T; Uchida T
    J Biochem; 1975 Oct; 78(4):811-5. PubMed ID: 175046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of cyclic adenosine 3':5'-monophosphate and cyclic guanosine 3':5'-monophosphate levels, cyclases, and phosphodiesterases in Morris hepatomas and liver.
    Hickie RA; Thompson WJ; Strada SJ; Couture-Murillo B; Morris HP; Robison GA
    Cancer Res; 1977 Oct; 37(10):3599-606. PubMed ID: 20224
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of Ca2+ and calmodulin on enzymes of cyclic nucleotide metabolism in ox neurohypophyseal secretosomes.
    Dartt Da; Torp-Pedersen C; Thorn NA
    Ann N Y Acad Sci; 1980; 356():369-70. PubMed ID: 6112949
    [No Abstract]   [Full Text] [Related]  

  • 12. The relationship between the growth characteristics of somatic cell hybrids and their level of camp and activities of adenylate cyclase and camp phosphodiesterase.
    Tisdale MJ; Phillips BJ
    Exp Cell Res; 1976 Apr; 99(1):63-71. PubMed ID: 177303
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on cyclic nucleotides in cancer. I. Adenylate guanylate cyclase and protein kinases in the prostatic sarcoma tissue.
    Shima S; Kawashima Y; Hirai M; Kouyama H
    Biochim Biophys Acta; 1976 Sep; 444(2):571-8. PubMed ID: 9148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine-sensitive adenylate cyclase and cAMP phosphodiesterase in substantia nigra and corpus striatum of rat brain.
    Traficante LJ; Friedman E; Oleshansky MA; Gershon S
    Life Sci; 1976 Oct; 19(7):1061-6. PubMed ID: 186677
    [No Abstract]   [Full Text] [Related]  

  • 15. Enzymes of cyclic nucleotide metabolism in invertebrate and vertebrate sperm.
    Gray JP; Drummond GI; Luk DW; Hardman JG; Sutherland EW
    Arch Biochem Biophys; 1976 Jan; 172(1):20-30. PubMed ID: 3138
    [No Abstract]   [Full Text] [Related]  

  • 16. Thyroid hormone control of cyclic nucleotide phosphodiesterases and the regulation of the sensitivity of the liver to hormones.
    Gumaa KA; Hothersall JS; Greenbaum AL; McLean P
    FEBS Lett; 1977 Aug; 80(1):45-8. PubMed ID: 196928
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of Ca2+ and calmodulin on cyclic nucleotide metabolism in neurosecretosomes isolated from ox neurohypophyses.
    Dartt DA; Torp-Pedersen C; Thorn NA
    Brain Res; 1981 Jan; 204(1):121-8. PubMed ID: 6113872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of age upon guanyl cyclase, adenyl cyclase, and cyclic nucleotide phosphodiesterases in rats.
    Williams RH; Thompson WJ
    Proc Soc Exp Biol Med; 1973 Jun; 143(2):382-7. PubMed ID: 4145374
    [No Abstract]   [Full Text] [Related]  

  • 19. Excitation-secretion coupling in exocrine glands. Properties of cyclic AMP phosphodiesterase and adenylate cyclase from the submaxillary gland and pancreas.
    Lemon MJ; Bhoola KD
    Biochim Biophys Acta; 1975 Mar; 385(1):101-13. PubMed ID: 164921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of adenyl cyclase and adenosine 3',5'-monophosphate phosphodiesterase in rat brain synaptosomes.
    Izumi H; Oyama H; Ozawa H
    Chem Pharm Bull (Tokyo); 1976 May; 24(5):1064-7. PubMed ID: 191203
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.