These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
659 related articles for article (PubMed ID: 11126681)
1. [Immunophenotyping in acute leukemia: detection of minimal residual disease]. Pálóczi K; Nahajevszky S; Jakab K; Regéczy N; Gopcsa L; László E; Földi J Orv Hetil; 2000 Nov; 141(46):2487-92. PubMed ID: 11126681 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive flow cytometry phenotype in acute leukemia at diagnosis and at relapse. Li X; Du W; Liu W; Li X; Li H; Huang SA APMIS; 2010 May; 118(5):353-9. PubMed ID: 20477810 [TBL] [Abstract][Full Text] [Related]
3. Combined use of reverse transcriptase polymerase chain reaction and flow cytometry to study minimal residual disease in Philadelphia positive acute lymphoblastic leukemia. Muñoz L; López O; Martino R; Brunet S; Bellido M; Rubiol E; Sierra J; Nomdedéu JF Haematologica; 2000 Jul; 85(7):704-10. PubMed ID: 10897122 [TBL] [Abstract][Full Text] [Related]
4. Flow cytometric determination of atypical antigen expression in acute leukemia for the study of minimal residual disease. Drach J; Drach D; Glassl H; Gattringer C; Huber H Cytometry; 1992; 13(8):893-901. PubMed ID: 1459006 [TBL] [Abstract][Full Text] [Related]
5. [Detection of minimal residual disease in acute leukemias by flow cytometry]. Scolnik MP Medicina (B Aires); 2000; 60 Suppl 2():83-6. PubMed ID: 11188938 [TBL] [Abstract][Full Text] [Related]
6. Flow cytometric determination of leukemia-associated marker combinations for the study of minimal residual disease. Babusíková O; Glasová M; Kusenda J; Koníková E; Mésárosová A Neoplasma; 1994; 41(6):305-13. PubMed ID: 7870213 [TBL] [Abstract][Full Text] [Related]
7. [Immunophenotyping of acute leukemias: diagnostic and pronostic utility in Abidjan, Côte d'Ivoire]. Inwoley KA; Sawadogo D; Mizero L; Salou M; Karim N; Sangaré A Bull Soc Pathol Exot; 2004; 97(5):319-22. PubMed ID: 15787262 [TBL] [Abstract][Full Text] [Related]
8. Leukemia-associated phenotypes: their characteristics and incidence in acute leukemia. Babusíková O; Glasová M; Koníková E; Kusenda J Neoplasma; 1996; 43(6):367-72. PubMed ID: 8996560 [TBL] [Abstract][Full Text] [Related]
9. Incidence, sensitivity, and specificity of leukemia-associated phenotypes in acute myeloid leukemia using specific five-color multiparameter flow cytometry. Al-Mawali A; Gillis D; Hissaria P; Lewis I Am J Clin Pathol; 2008 Jun; 129(6):934-45. PubMed ID: 18480011 [TBL] [Abstract][Full Text] [Related]
10. [Detection of minimal residual disease in acute leukemias by immunophenotyping of bone marrow cells]. Deptała A; Widzyńska I; Kuratowska Z Acta Haematol Pol; 1995; 26(4):403-11. PubMed ID: 8571742 [TBL] [Abstract][Full Text] [Related]
11. [Immunophenotyping of acute lymphatic leukemia: diagnostic aspects and clinical relevance]. Ludwig WD; Reiter A; Schott G; Schwartz S; Thiel E Wien Klin Wochenschr; 1994; 106(8):231-2, 233-7. PubMed ID: 8023515 [TBL] [Abstract][Full Text] [Related]
12. [Cytomorphology of acute mixed leukemia]. Sucić M; Batinić D; Zadro R; Mrsić S; Labar B Acta Med Croatica; 2008 Oct; 62(4):379-85. PubMed ID: 19205415 [TBL] [Abstract][Full Text] [Related]
13. Leukaemia-associated immunophenotypes (LAIP) are observed in 90% of adult and childhood acute lymphoblastic leukaemia: detection in remission marrow predicts outcome. Griesinger F; Pirò-Noack M; Kaib N; Falk M; Renziehausen A; Troff C; Grove D; Schnittger S; Büchner T; Ritter J; Hiddemann W; Wörmann B Br J Haematol; 1999 Apr; 105(1):241-55. PubMed ID: 10233388 [TBL] [Abstract][Full Text] [Related]
14. Lack of expression of the chondroitin sulphate proteoglycan neuron-glial antigen 2 on candidate stem cell populations in paediatric acute myeloid leukaemia/abn(11q23) and acute lymphoblastic leukaemia/t(4;11). Neudenberger J; Hotfilder M; Rosemann A; Langebrake C; Reinhardt D; Pieters R; Schrauder A; Schrappe M; Röttgers S; Harbott J; Vormoor J Br J Haematol; 2006 May; 133(3):337-44. PubMed ID: 16643437 [TBL] [Abstract][Full Text] [Related]
15. Immunophenotyping of acute leukaemias. Béné MC Immunol Lett; 2005 Apr; 98(1):9-21. PubMed ID: 15790504 [TBL] [Abstract][Full Text] [Related]
16. [Study of antigenic profile of blasts in acute lymphoblastic leukemia: flow cytometric analysis of 152 cases]. Jmili NB; Souguir S; Yacoub S; Khelif A; Kortas M Ann Biol Clin (Paris); 2009; 67(5):543-51. PubMed ID: 19789126 [TBL] [Abstract][Full Text] [Related]
17. Increased myeloid precursors in regenerating bone marrow; implications for detection of minimal residual disease in acute myeloid leukemia. Zeleznikova T; Stevulova L; Kovarikova A; Babusikova O Neoplasma; 2007; 54(6):471-7. PubMed ID: 17949229 [TBL] [Abstract][Full Text] [Related]
18. Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Campana D; Coustan-Smith E Best Pract Res Clin Haematol; 2002 Mar; 15(1):1-19. PubMed ID: 11987913 [TBL] [Abstract][Full Text] [Related]
19. [Clinical significance and prognostic detection of minimal residual disease in acute leukemias]. Deptała A; Widzyńska I; Kuratowska Z Acta Haematol Pol; 1995; 26(4):413-20. PubMed ID: 8571743 [TBL] [Abstract][Full Text] [Related]