BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 11126778)

  • 1. Dominant suppressor mutation bypasses the sphingolipid requirement for growth of Saccharomyces cells at low pH: role of the CWP2 gene.
    Skrzypek M; Lester RL; Spielmann P; Zingg N; Shelling J; Dickson RC
    Curr Genet; 2000 Nov; 38(4):191-201. PubMed ID: 11126778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressor gene analysis reveals an essential role for sphingolipids in transport of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae.
    Skrzypek M; Lester RL; Dickson RC
    J Bacteriol; 1997 Mar; 179(5):1513-20. PubMed ID: 9045807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypes of sphingolipid-dependent strains of Saccharomyces cerevisiae.
    Patton JL; Srinivasan B; Dickson RC; Lester RL
    J Bacteriol; 1992 Nov; 174(22):7180-4. PubMed ID: 1429441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase.
    Nagiec MM; Wells GB; Lester RL; Dickson RC
    J Biol Chem; 1993 Oct; 268(29):22156-63. PubMed ID: 8408076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of mutant Saccharomyces cerevisiae strains that survive without sphingolipids.
    Dickson RC; Wells GB; Schmidt A; Lester RL
    Mol Cell Biol; 1990 May; 10(5):2176-81. PubMed ID: 2183021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutant strains of Saccharomyces cerevisiae lacking sphingolipids synthesize novel inositol glycerophospholipids that mimic sphingolipid structures.
    Lester RL; Wells GB; Oxford G; Dickson RC
    J Biol Chem; 1993 Jan; 268(2):845-56. PubMed ID: 8419362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved cellulase production in recombinant Saccharomyces cerevisiae by disrupting the cell wall protein-encoding gene CWP2.
    Li J; Zhang MM; Wan C; Den Haan R; Bai FW; Zhao XQ
    J Biosci Bioeng; 2020 Feb; 129(2):165-171. PubMed ID: 31537451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae.
    van der Vaart JM; Caro LH; Chapman JW; Klis FM; Verrips CT
    J Bacteriol; 1995 Jun; 177(11):3104-10. PubMed ID: 7768807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of an extragenic suppressor of the rna1-1 mutation in Saccharomyces cerevisiae.
    Hong SJ; Yi YS; Koh SS; Park OK; Kang HS
    Mol Gen Genet; 1998 Sep; 259(4):404-13. PubMed ID: 9790597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2+ concentrations at 37 degrees C, is required for mannosylation of inositolphosphorylceramide.
    Beeler TJ; Fu D; Rivera J; Monaghan E; Gable K; Dunn TM
    Mol Gen Genet; 1997 Aug; 255(6):570-9. PubMed ID: 9323360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of a sec63 mutation identifies a novel component of the yeast endoplasmic reticulum translocation apparatus.
    Kurihara T; Silver P
    Mol Biol Cell; 1993 Sep; 4(9):919-30. PubMed ID: 8257794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae.
    Yang Z; Bisson LF
    Yeast; 1996 Nov; 12(14):1407-19. PubMed ID: 8948096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae.
    Abramova N; Sertil O; Mehta S; Lowry CV
    J Bacteriol; 2001 May; 183(9):2881-7. PubMed ID: 11292809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The byp1-3 allele of the Saccharomyces cerevisiae GGS1/TPS1 gene and its multi-copy suppressor tRNA(GLN) (CAG): Ggs1/Tps1 protein levels restraining growth on fermentable sugars and trehalose accumulation.
    Hohmann S; Van Dijck P; Luyten K; Thevelein JM
    Curr Genet; 1994 Oct; 26(4):295-301. PubMed ID: 7882422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mutation in sphingolipid synthesis suppresses defects in yeast ergosterol metabolism.
    Valachovic M; Wilcox LI; Sturley SL; Bard M
    Lipids; 2004 Aug; 39(8):747-52. PubMed ID: 15638242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of a novel gene, Cms1, can rescue the growth arrest of a Saccharomyces cerevisiae mcm10 suppressor.
    Wang JW; Wu JR
    Cell Res; 2001 Dec; 11(4):285-91. PubMed ID: 11787774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutation in a new gene MAF1 affects tRNA suppressor efficiency in Saccharomyces cerevisiae.
    Boguta M; Czerska K; Zoładek T
    Gene; 1997 Feb; 185(2):291-6. PubMed ID: 9055829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid residues in Std1 protein required for induction of SUC2 transcription are also required for suppression of TBPDelta57 growth defect in Saccharomyces cerevisiae.
    Zhang X; Shen W; Schmidt MC
    Gene; 1998 Jul; 215(1):131-41. PubMed ID: 9666103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective role of the HOG pathway against the growth defect caused by impaired biosynthesis of complex sphingolipids in yeast Saccharomyces cerevisiae.
    Yamaguchi Y; Katsuki Y; Tanaka S; Kawaguchi R; Denda H; Ikeda T; Funato K; Tani M
    Mol Microbiol; 2018 Feb; 107(3):363-386. PubMed ID: 29215176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide sequence of the SAC2 gene of Saccharomyces cerevisiae.
    Kölling R; Lee A; Chen EY; Botstein D
    Yeast; 1994 Sep; 10(9):1211-6. PubMed ID: 7754710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.