These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11127896)

  • 1. Arsenic accumulation in three species of sea turtles.
    Saeki K; Sakakibara H; Sakai H; Kunito T; Tanabe S
    Biometals; 2000 Sep; 13(3):241-50. PubMed ID: 11127896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan.
    Agusa T; Takagi K; Kubota R; Anan Y; Iwata H; Tanabe S
    Environ Pollut; 2008 May; 153(1):127-36. PubMed ID: 17728031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic species and their accumulation features in green turtles (Chelonia mydas).
    Agusa T; Takagi K; Iwata H; Tanabe S
    Mar Pollut Bull; 2008; 57(6-12):782-9. PubMed ID: 18291422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) from Yaeyama Islands, Japan.
    Anan Y; Kunito T; Watanabe I; Sakai H; Tanabe S
    Environ Toxicol Chem; 2001 Dec; 20(12):2802-14. PubMed ID: 11764164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The characterization of cytosolic glutathione transferase from four species of sea turtles: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata).
    Richardson KL; Gold-Bouchot G; Schlenk D
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Aug; 150(2):279-84. PubMed ID: 19460460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic accumulation in livers of pinnipeds, seabirds and sea turtles: subcellular distribution and interaction between arsenobetaine and glycine betaine.
    Fujihara J; Kunito T; Kubota R; Tanabe S
    Comp Biochem Physiol C Toxicol Pharmacol; 2003 Dec; 136(4):287-96. PubMed ID: 15012900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of several arsenic compounds in the liver of birds, cetaceans, pinnipeds, and sea turtles.
    Kubota R; Kunito T; Tanabe S
    Environ Toxicol Chem; 2003 Jun; 22(6):1200-7. PubMed ID: 12785574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS.
    Miyashita S; Shimoya M; Kamidate Y; Kuroiwa T; Shikino O; Fujiwara S; Francesconi KA; Kaise T
    Chemosphere; 2009 May; 75(8):1065-73. PubMed ID: 19203781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues.
    Faust DR; Hooper MJ; Cobb GP; Barnes M; Shaver D; Ertolacci S; Smith PN
    Environ Toxicol Chem; 2014 Sep; 33(9):2020-7. PubMed ID: 24889685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-essential toxic element (Cd, As, Hg and Pb) levels in muscle, liver and kidney of loggerhead sea turtles (Caretta caretta) stranded along the southwestern coasts of Tyrrhenian sea.
    Esposito M; De Roma A; Sansone D; Capozzo D; Iaccarino D; di Nocera F; Gallo P
    Comp Biochem Physiol C Toxicol Pharmacol; 2020 May; 231():108725. PubMed ID: 32081760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of organochlorine pesticides and PCB residues among hawksbill (Eretmochelys imbricata) and green (Chelonia mydas) turtles in the Yucatan Peninsula and their maternal transfer.
    García-Besné G; Valdespino C; Rendón-von Osten J
    Mar Pollut Bull; 2015 Feb; 91(1):139-48. PubMed ID: 25549825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical speciation of arsenic in the livers of higher trophic marine animals.
    Kubota R; Kunito T; Tanabe S
    Mar Pollut Bull; 2002; 45(1-12):218-23. PubMed ID: 12398388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle-induced X-ray emission analysis of elements in plasma from wild and captive sea turtles (Eretmochelys imbricata, Chelonia mydas, and Caretta caretta) in Okinawa, Japan.
    Suzuki K; Noda J; Yanagisawa M; Kawazu I; Sera K; Fukui D; Asakawa M; Yokota H
    Biol Trace Elem Res; 2012 Sep; 148(3):302-8. PubMed ID: 22402882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal distribution in blood, liver and kidneys of Loggerhead (Caretta caretta) and Green (Chelonia mydas) sea turtles from the Northeast Mediterranean Sea.
    Yipel M; Tekeli İO; İşler CT; Altuğ ME
    Mar Pollut Bull; 2017 Dec; 125(1-2):487-491. PubMed ID: 28802660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacokinetic characteristics of florfenicol in green sea turtles (Chelonia mydas) and hawksbill sea turtles (Eretmochelys imbricata) after intramuscular administration.
    Sitthiangkool P; Poapolathep A; Chomcheun T; Jongkolpath O; Khidkhan K; Klangkaew N; Phaochoosak N; Giorgi M; Poapolathep S
    J Vet Pharmacol Ther; 2024 Jul; 47(4):300-307. PubMed ID: 38520083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The current situation of inorganic elements in marine turtles: A general review and meta-analysis.
    Cortés-Gómez AA; Romero D; Girondot M
    Environ Pollut; 2017 Oct; 229():567-585. PubMed ID: 28688307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trophic behavior of inorganic elements in nesting sea turtles (Chelonia mydas, Eretmochelys imbricata, and Caretta caretta) in Quintana Roo: Biomagnification and biodilution effect in blood and scute tissues.
    Escobedo Mondragón M; Pérez Luzardo O; Henríquez-Hernández LA; Rodríguez-Hernández Á; Zumbado M; Rosiles Martínez JR; González Farias F; Suzán G; González-Rebeles Islas C
    Mar Pollut Bull; 2023 Feb; 187():114582. PubMed ID: 36634539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentrations and distributions of metals in tissues of stranded green sea turtles (Chelonia mydas) from the southern Atlantic coast of Brazil.
    da Silva CC; Varela AS; Barcarolli IF; Bianchini A
    Sci Total Environ; 2014 Jan; 466-467():109-18. PubMed ID: 23895781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of the fecal bacterial communities of hawksbill sea turtles (Eretmochelys imbricata) and green sea turtles (Chelonia mydas).
    Chen Y; Xia Z; Li H
    FEMS Microbiol Lett; 2022 Sep; 369(1):. PubMed ID: 35945331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trophic status drives interannual variability in nesting numbers of marine turtles.
    Broderick AC; Godley BJ; Hays GC
    Proc Biol Sci; 2001 Jul; 268(1475):1481-7. PubMed ID: 11454292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.