BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 11127991)

  • 21. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum.
    Giovagnetti V; Ruban AV
    Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle.
    Lavaud J; Kroth PG
    Plant Cell Physiol; 2006 Jul; 47(7):1010-6. PubMed ID: 16699176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Operation of the xanthophyll cycle and degradation of D1 protein in the inducible CAM plant, Talinum triangulare, under water deficit.
    Pieters AJ; Tezara W; Herrera A
    Ann Bot; 2003 Sep; 92(3):393-9. PubMed ID: 12881404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity.
    Peterson RB; Havir EA
    Planta; 2000 Jan; 210(2):205-14. PubMed ID: 10664126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaf C40.4: a carotenoid-associated protein involved in the modulation of photosynthetic efficiency?
    Monte E; Ludevid D; Prat S
    Plant J; 1999 Aug; 19(4):399-410. PubMed ID: 10504562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves.
    Baker NR; Oxborough K; Lawson T; Morison JI
    J Exp Bot; 2001 Apr; 52(356):615-21. PubMed ID: 11373309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances.
    Stroch M; Cajánek M; Kalina J; Spunda V
    J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effects of NO3- stress on photosynthetic rate, photochemical efficiency of PS II and light energy allocation in cucumber seedling leaves].
    Su XR; Wang XF; Yang FJ; Wei M
    Ying Yong Sheng Tai Xue Bao; 2007 Jul; 18(7):1441-6. PubMed ID: 17886632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward an understanding of the mechanism of nonphotochemical quenching in green plants.
    Holt NE; Fleming GR; Niyogi KK
    Biochemistry; 2004 Jul; 43(26):8281-9. PubMed ID: 15222740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps.
    Belgio E; Kapitonova E; Chmeliov J; Duffy CD; Ungerer P; Valkunas L; Ruban AV
    Nat Commun; 2014 Jul; 5():4433. PubMed ID: 25014663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex.
    Horton P; Ruban AV; Rees D; Pascal AA; Noctor G; Young AJ
    FEBS Lett; 1991 Nov; 292(1-2):1-4. PubMed ID: 1959588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alteration of photosystem II properties with non-photochemical excitation quenching.
    Laisk A; Oja V
    Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1405-18. PubMed ID: 11127995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic analysis of nonphotochemical quenching of chlorophyll fluorescence. 2. Isolated light-harvesting complexes.
    Wentworth M; Ruban AV; Horton P
    Biochemistry; 2001 Aug; 40(33):9902-8. PubMed ID: 11502184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PsbS genotype in relation to coordinated function of PS II and PS I in Arabidopsis leaves.
    Peterson RB
    Photosynth Res; 2005 Aug; 85(2):205-19. PubMed ID: 16075321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Kinetics and spectra of photo-induced changes in the absorption of pigment-protein complexes of photosystem 1 in a picosecond range].
    Borisov AIu; Danelius RV; Il'ina MD; Krasauskas VV; Piskarskas AS
    Mol Biol (Mosk); 1985; 19(3):636-42. PubMed ID: 3897830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic investigation into the mechanism of the chlorophyll fluorescence quenching in isolated photosystem II light-harvesting complexes.
    Wentworth M; Ruban AV; Horton P
    J Biol Chem; 2003 Jun; 278(24):21845-50. PubMed ID: 12670939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum.
    Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL
    Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis.
    Niyogi KK; Truong TB
    Curr Opin Plant Biol; 2013 Jun; 16(3):307-14. PubMed ID: 23583332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NPQ
    Tietz S; Hall CC; Cruz JA; Kramer DM
    Plant Cell Environ; 2017 Aug; 40(8):1243-1255. PubMed ID: 28699261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem II in Arabidopsis thaliana.
    Tanaka R; Koshino Y; Sawa S; Ishiguro S; Okada K; Tanaka A
    Plant J; 2001 May; 26(4):365-73. PubMed ID: 11439124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.