These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 1112805)
1. Control of fructose and citrate synthesis in guinea pig seminal vesicle epithelium. Prendergast FG; Veneziale CM J Biol Chem; 1975 Feb; 250(4):1282-9. PubMed ID: 1112805 [TBL] [Abstract][Full Text] [Related]
2. Guinea pig seminal vesicle epithelium: a model for androgen action. Veneziale CM; Steer RC; Büchi K Adv Sex Horm Res; 1977; 3():1-50. PubMed ID: 137664 [No Abstract] [Full Text] [Related]
3. Role of fructose 2,6-bisphosphate in the stimulation of glycolysis by anoxia in isolated hepatocytes. Hue L Biochem J; 1982 Aug; 206(2):359-65. PubMed ID: 6216883 [TBL] [Abstract][Full Text] [Related]
4. Fructose 2,6-bisphosphate, sugar phosphates and adenine nucleotides in the regulation of glucose metabolism in the lactating rat mammary gland. Sochor M; Greenbaum AL; McLean P FEBS Lett; 1984 Apr; 169(1):12-6. PubMed ID: 6325235 [TBL] [Abstract][Full Text] [Related]
5. The effect of ethanol or sorbitol on glucose production from pyruvate in isolated hepatocytes from 48-hour fasted guinea-pigs. Armstrong MK; Weissberger LE Int J Biochem; 1985; 17(9):989-93. PubMed ID: 4065411 [TBL] [Abstract][Full Text] [Related]
6. Effects of added nucleotides on renal carbohydrate metabolism. Weidemann MJ; Hems DA; Krebs HA Biochem J; 1969 Oct; 115(1):1-10. PubMed ID: 4310321 [TBL] [Abstract][Full Text] [Related]
7. Acute control of fatty acid synthesis by cyclic AMP in the chick liver cell: possible site of inhibition of citrate formation. Clarke SD; Watkins PA; Lane MD J Lipid Res; 1979 Nov; 20(8):974-85. PubMed ID: 230268 [TBL] [Abstract][Full Text] [Related]
8. Properties of phosphofructokinase from the mucosa of rat jejunum and their relation to the lack of Pasteur effect. Tejwani GA; Ramaiah A Biochem J; 1971 Nov; 125(2):507-14. PubMed ID: 4259410 [TBL] [Abstract][Full Text] [Related]
9. Antiketogenic action of fructose, glyceraldehyde, and sorbitol in the rat in vivo. Rawat AK; Menahan LA Diabetes; 1975 Oct; 24(10):926-32. PubMed ID: 1175862 [TBL] [Abstract][Full Text] [Related]
10. Evidence for glycerol 3-phosphate:glucose transphosphorylase activity in bloodstream Trypanosoma brucei brucei. Kiaira JK; Njogu RM Int J Biochem; 1989; 21(8):839-45. PubMed ID: 2555230 [TBL] [Abstract][Full Text] [Related]
11. Evidence for the coordinate control of glycogen synthesis, glucose utilization, and glycolysis in Escherichia coli. II. Quantitative correlation of the inhibition of glycogen synthesis and the stimulation of glucose utilization by 2,4-dinitrophenol with the effects on the cellular levels of glucose 6-phosphate, fructose, 1,6-diphosphate, and total adenylates. Dietzler DN; Leckie MP; Magnani JL; Sughrue MJ; Bergstein PE J Biol Chem; 1975 Sep; 250(18):7195-203. PubMed ID: 1100623 [TBL] [Abstract][Full Text] [Related]
12. Diabetes-induced changes in lens antioxidant status, glucose utilization and energy metabolism: effect of DL-alpha-lipoic acid. Obrosova I; Cao X; Greene DA; Stevens MJ Diabetologia; 1998 Dec; 41(12):1442-50. PubMed ID: 9867211 [TBL] [Abstract][Full Text] [Related]
13. Regulation of glycolysis and L-glycerol 3-phosphate concentration in rat epididymal adipose tissue in vitro. Role of phosphofructokinase. Halperin ML; Denton RM Biochem J; 1969 Jun; 113(1):207-14. PubMed ID: 4308837 [TBL] [Abstract][Full Text] [Related]
14. Differences in glycolytic capacity and hypoxia tolerance between hepatoma cells and hepatocytes. Hugo-Wissemann D; Anundi I; Lauchart W; Viebahn R; de Groot H Hepatology; 1991 Feb; 13(2):297-303. PubMed ID: 1847350 [TBL] [Abstract][Full Text] [Related]
15. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Winkler BS; Arnold MJ; Brassell MA; Sliter DR Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631 [TBL] [Abstract][Full Text] [Related]
16. Control of phosphofructokinase from rat skeletal muscle. Effects of fructose diphosphate, AMP, ATP, and citrate. Tornheim K; Lowenstein JM J Biol Chem; 1976 Dec; 251(23):7322-8. PubMed ID: 12161 [TBL] [Abstract][Full Text] [Related]
17. Glucose requirement for postischemic recovery of perfused working heart. Mallet RT; Hartman DA; Bünger R Eur J Biochem; 1990 Mar; 188(2):481-93. PubMed ID: 2318214 [TBL] [Abstract][Full Text] [Related]
18. Substrate-induced alterations of high energy phosphate metabolism and contractile function in the perfused heart. Zweier JL; Jacobus WE J Biol Chem; 1987 Jun; 262(17):8015-21. PubMed ID: 3597359 [TBL] [Abstract][Full Text] [Related]
19. Hepatic accumulation of metabolites after fructose loading. Woods HF Acta Med Scand Suppl; 1972; 542():87-103. PubMed ID: 4516495 [No Abstract] [Full Text] [Related]
20. Carbohydrate metabolism in the isolated perfused rat kidney. Hems DA; Gaja G Biochem J; 1972 Jun; 128(2):421-6. PubMed ID: 5084798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]