These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1112827)

  • 1. Primary structural analysis of sulfhydryl protease inhibitors from pineapple stem.
    Reddy MN; Keim PS; Heinrikson RL; Kezdy FJ
    J Biol Chem; 1975 Mar; 250(5):1741-50. PubMed ID: 1112827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The amino acid sequences of isoforms of the bromelain inhibitor from pineapple stem.
    Hatano Ki; Tanokura M; Takahashi K
    J Biochem; 1998 Aug; 124(2):457-61. PubMed ID: 9685742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of genomic sequence coding for bromelain inhibitors in pineapple and expression of its recombinant isoform.
    Sawano Y; Muramatsu T; Hatano K; Nagata K; Tanokura M
    J Biol Chem; 2002 Aug; 277(31):28222-7. PubMed ID: 12016215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function relationship of bromelain isoinhibitors from pineapple stem.
    Hatano K; Sawano Y; Tanokura M
    Biol Chem; 2002; 383(7-8):1151-6. PubMed ID: 12437100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary structure, sequence-specific 1H-NMR assignments and secondary structure in solution of bromelain inhibitor VI from pineapple stem.
    Hatano K; Kojima M; Tanokura M; Takahashi K
    Eur J Biochem; 1995 Sep; 232(2):335-43. PubMed ID: 7556179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apparent sequence homology among leguminosae small molecular weight, cystine rich protease inhibitors and pineapple stem bromelain inhibitors.
    Szilágyi S; Szilágyi E
    Acta Biochim Biophys Acad Sci Hung; 1978; 13(4):293-8. PubMed ID: 755328
    [No Abstract]   [Full Text] [Related]  

  • 7. Stem bromelain: amino acid sequence and implications for weak binding of cystatin.
    Ritonja A; Rowan AD; Buttle DJ; Rawlings ND; Turk V; Barrett AJ
    FEBS Lett; 1989 Apr; 247(2):419-24. PubMed ID: 2714443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary structure of human fibrinogen and fibrin. Isolation and partial characterization of chains of fragment D.
    Collen D; Kudryk B; Hessel B; Blombäck B
    J Biol Chem; 1975 Aug; 250(15):5808-17. PubMed ID: 125279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hemoglobins of the bullfrog Rana catesbeiana. The structure of the beta chain of component C and the role of the alpha chain in the formation of intermolecular disulfide bonds.
    Tam LT; Gray GP; Riggs AF
    J Biol Chem; 1986 Jun; 261(18):8290-4. PubMed ID: 3487542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative structural analysis of fruit and stem bromelain from Ananas comosus.
    Ramli ANM; Manas NHA; Hamid AAA; Hamid HA; Illias RM
    Food Chem; 2018 Nov; 266():183-191. PubMed ID: 30381175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidic cysteine protease inhibitors from pineapple stem.
    Heinrikson RL; Kézdy FJ
    Methods Enzymol; 1976; 45():740-51. PubMed ID: 1012030
    [No Abstract]   [Full Text] [Related]  

  • 12. The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms.
    Matagne A; Bolle L; El Mahyaoui R; Baeyens-Volant D; Azarkan M
    Phytochemistry; 2017 Jun; 138():29-51. PubMed ID: 28238440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of potato carboxypeptidase inhibitor: disulfide pairing and exposure of aromatic residues.
    Leary TR; Grahn DT; Neurath H; Hass GM
    Biochemistry; 1979 May; 18(11):2252-6. PubMed ID: 444453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete amino acid sequence of ananain and a comparison with stem bromelain and other plant cysteine proteases.
    Lee KL; Albee KL; Bernasconi RJ; Edmunds T
    Biochem J; 1997 Oct; 327 ( Pt 1)(Pt 1):199-202. PubMed ID: 9355753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arrangement of disulfide bridges and positions of sulfhydryl groups in tetanus toxin.
    Krieglstein K; Henschen A; Weller U; Habermann E
    Eur J Biochem; 1990 Feb; 188(1):39-45. PubMed ID: 2108021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent structure of botulinum neurotoxin type A: location of sulfhydryl groups, and disulfide bridges and identification of C-termini of light and heavy chains.
    Krieglstein KG; DasGupta BR; Henschen AH
    J Protein Chem; 1994 Jan; 13(1):49-57. PubMed ID: 8011071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of mouse submaxillary gland renin. Identification of two disulfide-linked polypeptide chains and the complete amino acid sequence of the light chain.
    Misono KS; Inagami T
    J Biol Chem; 1982 Jul; 257(13):7536-40. PubMed ID: 7045107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid sequence of an active fragment of potato proteinase inhibitor IIb.
    Iwasaki T; Wada J; Kiyohara T; Yoshikawa M
    J Biochem; 1977 Oct; 82(4):991-1004. PubMed ID: 924994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute side-chain structure at position 13 is required for the inhibitory activity of bromein.
    Sawano Y; Hatano K; Miyakawa T; Tanokura M
    J Biol Chem; 2008 Dec; 283(52):36338-43. PubMed ID: 18948264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial amino acid sequence of an IgA2 human immunoglobulin heavy chain.
    Wolfenstein-Todel C; Frangione B; Franklin EC
    Biochim Biophys Acta; 1975 Feb; 379(2):627-37. PubMed ID: 804325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.