These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11128708)

  • 1. MYO1, a novel, unconventional myosin gene affects endocytosis and macronuclear elongation in Tetrahymena thermophila.
    Williams SA; Hosein RE; Garcés JA; Gavin RH
    J Eukaryot Microbiol; 2000; 47(6):561-8. PubMed ID: 11128708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myo1 localizes to phagosomes, some of which traffic to the nucleus in a Myo1-dependent manner in Tetrahymena thermophila.
    Hosein RE; Gavin RH
    Cell Motil Cytoskeleton; 2007 Dec; 64(12):926-35. PubMed ID: 17688250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MyTH4, independent of its companion FERM domain, affects the organization of an intramacronuclear microtubule array and is involved in elongation of the macronucleus in Tetrahymena thermophila.
    Gotesman M; Hosein RE; Gavin RH
    Cytoskeleton (Hoboken); 2011 Apr; 68(4):220-36. PubMed ID: 21387572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A PCR screen identifies a novel, unconventional myosin heavy chain gene (MYO1) in Tetrahymena thermophila.
    Garcés J; Gavin RH
    J Eukaryot Microbiol; 1998; 45(3):252-9. PubMed ID: 9627986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A beta-tubulin mutation selectively uncouples nuclear division and cytokinesis in Tetrahymena thermophila.
    Smith JJ; Yakisich JS; Kapler GM; Cole ES; Romero DP
    Eukaryot Cell; 2004 Oct; 3(5):1217-26. PubMed ID: 15470250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MY01, a class XIV myosin, affects developmentally-regulated elimination of the macronucleus during conjugation of Tetrahymena thermophila.
    Garcés J; Hosein RE; Gavin RH
    Biol Cell; 2009 Jul; 101(7):393-400. PubMed ID: 19032155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A FERM domain in a class XIV myosin interacts with actin and tubulin and localizes to the cytoskeleton, phagosomes, and nucleus in Tetrahymena thermophila.
    Gotesman M; Hosein RE; Gavin RH
    Cytoskeleton (Hoboken); 2010 Feb; 67(2):90-101. PubMed ID: 20169533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of GFP-actin leads to failure of nuclear elongation and cytokinesis in Tetrahymena thermophila.
    Hosein RE; Williams SA; Haye K; Gavin RH
    J Eukaryot Microbiol; 2003; 50(6):403-8. PubMed ID: 14733431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High frequency intragenic recombination during macronuclear development in Tetrahymena thermophila restores the wild-type SerH1 gene.
    Deak JC; Doerder FP
    Genetics; 1998 Mar; 148(3):1109-15. PubMed ID: 9539428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed motility of phagosomes in Tetrahymena thermophila requires actin and Myo1p, a novel unconventional myosin.
    Hosein RE; Williams SA; Gavin RH
    Cell Motil Cytoskeleton; 2005 May; 61(1):49-60. PubMed ID: 15810016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of cortical geometry in the nuclear development of Tetrahymena thermophila.
    Gaertig J; Cole ES
    J Eukaryot Microbiol; 2000; 47(6):590-6. PubMed ID: 11128713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-mediated transformation in Tetrahymena.
    Gaertig J; Gorovsky MA
    Methods Cell Biol; 1995; 47():559-69. PubMed ID: 7476545
    [No Abstract]   [Full Text] [Related]  

  • 13. Deletion of the Tetrahymena thermophila rDNA replication fork barrier region disrupts macronuclear rDNA excision and creates a fragile site in the micronuclear genome.
    Yakisich JS; Kapler GM
    Nucleic Acids Res; 2006; 34(2):620-34. PubMed ID: 16449202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for the isolation of ciliary motility and assembly mutants in Tetrahymena.
    Pennock DG; Gorovsky MA
    Methods Cell Biol; 1995; 47():571-8. PubMed ID: 7476547
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of nullisomic chromosome deficiencies on conjugation events in Tetrahymena thermophila: insufficiency of the parental macronucleus to direct postzygotic development.
    Ward JG; Davis MC; Allis CD; Herrick G
    Genetics; 1995 Jul; 140(3):989-1005. PubMed ID: 7672597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of the binucleate ciliate
    Zhang L; Cervantes MD; Pan S; Lindsley J; Dabney A; Kapler GM
    Mol Biol Cell; 2023 Feb; 34(2):rs1. PubMed ID: 36475712
    [No Abstract]   [Full Text] [Related]  

  • 17. Macronuclear division and cytokinesis in Tetrahymena.
    Numata O; Fujiu K; Gonda K
    Cell Biol Int; 1999; 23(12):849-57. PubMed ID: 10772759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular localization and role of Ran1 in Tetrahymena thermophila amitotic macronucleus.
    Liang H; Xu J; Zhao D; Tian H; Yang X; Liang A; Wang W
    FEBS J; 2012 Jul; 279(14):2520-33. PubMed ID: 22594798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conjugal blocks in Tetrahymena pattern mutants and their cytoplasmic rescue. I. Broadened cortical domains (bcd).
    Cole ES
    Dev Biol; 1991 Dec; 148(2):403-19. PubMed ID: 1743392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth.
    Li S; Yin L; Cole ES; Udani RA; Karrer KM
    Dev Biol; 2006 Jul; 295(2):633-46. PubMed ID: 16712831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.