BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11129002)

  • 1. Redox thermodynamics of low-potential iron-sulfur proteins.
    Battistuzzi G; D'Onofrio M; Borsari M; Sola M; Macedo AL; Moura JJ; Rodrigues P
    J Biol Inorg Chem; 2000 Dec; 5(6):748-60. PubMed ID: 11129002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enthalpy/entropy compensation phenomena in the reduction thermodynamics of electron transport metalloproteins.
    Battistuzzi G; Borsari M; Di Rocco G; Ranieri A; Sola M
    J Biol Inorg Chem; 2004 Jan; 9(1):23-6. PubMed ID: 14586786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural origins of redox potentials in Fe-S proteins: electrostatic potentials of crystal structures.
    Swartz PD; Beck BW; Ichiye T
    Biophys J; 1996 Dec; 71(6):2958-69. PubMed ID: 8968568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of charge and polarity on the redox potentials of high-potential iron-sulfur proteins: evidence for the existence of two groups.
    Heering HA; Bulsink BM; Hagen WR; Meyer TE
    Biochemistry; 1995 Nov; 34(45):14675-86. PubMed ID: 7578075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculating standard reduction potentials of [4Fe-4S] proteins.
    Perrin BS; Niu S; Ichiye T
    J Comput Chem; 2013 Mar; 34(7):576-82. PubMed ID: 23115132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional and reduction potential calculations of Fe4S4 clusters.
    Torres RA; Lovell T; Noodleman L; Case DA
    J Am Chem Soc; 2003 Feb; 125(7):1923-36. PubMed ID: 12580620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of metalloprotein reduction potential: compensation phenomena in the reduction thermodynamics of blue copper proteins.
    Battistuzzi G; Bellei M; Borsari M; Canters GW; de Waal E; Jeuken LJ; Ranieri A; Sola M
    Biochemistry; 2003 Aug; 42(30):9214-20. PubMed ID: 12885256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic characterization of a novel tetranuclear Fe cluster in an iron-sulfur protein isolated from Desulfovibrio desulfuricans.
    Tavares P; Pereira AS; Krebs C; Ravi N; Moura JJ; Moura I; Huynh BH
    Biochemistry; 1998 Mar; 37(9):2830-42. PubMed ID: 9485434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of the redox properties of CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E1) and CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase (E3): two important enzymes involved in the biosynthesis of ascarylose.
    Burns KD; Pieper PA; Liu HW; Stankovich MT
    Biochemistry; 1996 Jun; 35(24):7879-89. PubMed ID: 8672489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors influencing redox thermodynamics and electron self-exchange for the [Fe4S4] cluster in Chromatium vinosum high potential iron protein: the role of core aromatic residues in defining cluster redox chemistry.
    Soriano A; Li D; Bian S; Agarwal A; Cowan JA
    Biochemistry; 1996 Sep; 35(38):12479-86. PubMed ID: 8823183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desulfovibrio Gigas hydrogenase: redox properties of the nickel and iron-sulfur centers.
    Teixeira M; Moura I; Xavier AV; Dervartanian DV; Legall J; Peck HD; Huynh BH; Moura JJ
    Eur J Biochem; 1983 Feb; 130(3):481-4. PubMed ID: 6297907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical aspects of the movement of the rieske iron sulfur protein during quinol oxidation by the bc(1) complex from mitochondria and photosynthetic bacteria.
    Crofts AR; Hong S; Zhang Z; Berry EA
    Biochemistry; 1999 Nov; 38(48):15827-39. PubMed ID: 10625447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De Novo Design of Iron-Sulfur Proteins.
    Dizicheh ZB; Halloran N; Asma W; Ghirlanda G
    Methods Enzymol; 2017; 595():33-53. PubMed ID: 28882205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed valent sites in biological electron transfer.
    Solomon EI; Xie X; Dey A
    Chem Soc Rev; 2008 Apr; 37(4):623-38. PubMed ID: 18362972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer in biological systems: an overview.
    Dreyer JL
    Experientia; 1984 Jul; 40(7):653-75. PubMed ID: 6378653
    [No Abstract]   [Full Text] [Related]  

  • 16. Redox pathways in electron-transfer proteins: correlations between reactivities, solvent exposure, and unpaired-spin-density distributions.
    Tollin G; Hanson LK; Caffrey M; Meyer TE; Cusanovich MA
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3693-7. PubMed ID: 3012528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway.
    Pieulle L; Morelli X; Gallice P; Lojou E; Barbier P; Czjzek M; Bianco P; Guerlesquin F; Hatchikian EC
    J Mol Biol; 2005 Nov; 354(1):73-90. PubMed ID: 16226767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EPR and redox characterization of iron-sulfur centers in nitrate reductases A and Z from Escherichia coli. Evidence for a high-potential and a low-potential class and their relevance in the electron-transfer mechanism.
    Guigliarelli B; Asso M; More C; Augier V; Blasco F; Pommier J; Giordano G; Bertrand P
    Eur J Biochem; 1992 Jul; 207(1):61-8. PubMed ID: 1321049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the flavins and the iron-sulfur centers of glutamate synthase from Azospirillum brasilense by absorption, circular dichroism, and electron paramagnetic resonance spectroscopies.
    Vanoni MA; Edmondson DE; Zanetti G; Curti B
    Biochemistry; 1992 May; 31(19):4613-23. PubMed ID: 1316154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center.
    Cao Z; Hall MB
    J Am Chem Soc; 2001 Apr; 123(16):3734-42. PubMed ID: 11457105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.