BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11129055)

  • 1. Phylogenetic analysis of the functional domains of mariner-like element (MLE) transposases.
    Augé-Gouillon C; Notareschi-Leroy H; Abad P; Periquet G; Bigot Y
    Mol Gen Genet; 2000 Nov; 264(4):506-13. PubMed ID: 11129055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ITR binding domain of the Mariner Mos-1 transposase.
    Augé-Gouillou C; Hamelin MH; Demattei MV; Periquet G; Bigot Y
    Mol Genet Genomics; 2001 Mar; 265(1):58-65. PubMed ID: 11370873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivated mariner-like elements (MLE) in pink bollworm, Pectinophora gossypiella.
    Wang J; Staten R; Miller TA; Park Y
    Insect Mol Biol; 2005 Oct; 14(5):547-53. PubMed ID: 16164610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains.
    Brillet B; Bigot Y; Augé-Gouillou C
    Genetica; 2007 Jun; 130(2):105-20. PubMed ID: 16912840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative phylogenetic analysis of full-length mariner elements isolated from the Indian tasar silkmoth, Antheraea mylitta (Lepidoptera: saturniidae).
    Prasad MD; Nagaraju J
    J Biosci; 2003 Jun; 28(4):443-53. PubMed ID: 12799491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends.
    Miskey C; Papp B; Mátés L; Sinzelle L; Keller H; Izsvák Z; Ivics Z
    Mol Cell Biol; 2007 Jun; 27(12):4589-600. PubMed ID: 17403897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of seventy-nine full-length mariner-like transposase genes in the Bambusoideae subfamily.
    Zhou MB; Zhong H; Tang DQ
    J Plant Res; 2011 Sep; 124(5):607-17. PubMed ID: 21165667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs.
    Feschotte C; Osterlund MT; Peeler R; Wessler SR
    Nucleic Acids Res; 2005; 33(7):2153-65. PubMed ID: 15831788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conservation of Palindromic and Mirror Motifs within Inverted Terminal Repeats of mariner-like Elements.
    Bigot Y; Brillet B; Augé-Gouillou C
    J Mol Biol; 2005 Aug; 351(1):108-16. PubMed ID: 15946679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition.
    Butler MG; Chakraborty SA; Lampe DJ
    Genetica; 2006 May; 127(1-3):351-66. PubMed ID: 16850239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposase-transposase interactions in MOS1 complexes: a biochemical approach.
    Carpentier G; Jaillet J; Pflieger A; Adet J; Renault S; Augé-Gouillou C
    J Mol Biol; 2011 Jan; 405(4):892-908. PubMed ID: 21110982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A potentially functional mariner transposable element in the protist Trichomonas vaginalis.
    Silva JC; Bastida F; Bidwell SL; Johnson PJ; Carlton JM
    Mol Biol Evol; 2005 Jan; 22(1):126-34. PubMed ID: 15371525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro recombination and inverted terminal repeat binding activities of the Mcmar1 transposase.
    Renault S; Demattéi MV; Lahouassa H; Bigot Y; Augé-Gouillou C
    Biochemistry; 2010 May; 49(17):3534-44. PubMed ID: 20359246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinities of Terminal Inverted Repeats to DNA Binding Domain of Transposase Affect the Transposition Activity of Bamboo
    Ramakrishnan M; Zhou M; Pan C; Hänninen H; Yrjälä K; Vinod KK; Tang D
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31357686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes.
    Wang S; Diaby M; Puzakov M; Ullah N; Wang Y; Danley P; Chen C; Wang X; Gao B; Song C
    Mol Phylogenet Evol; 2021 Aug; 161():107143. PubMed ID: 33713798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon.
    Feschotte C; Mouchès C
    Mol Biol Evol; 2000 May; 17(5):730-7. PubMed ID: 10779533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons.
    Shao H; Tu Z
    Genetics; 2001 Nov; 159(3):1103-15. PubMed ID: 11729156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First evidence of mariner-like transposons in the genome of the marine microalga Amphora acutiuscula (Bacillariophyta).
    Nguyen DH; Hermann D; Caruso A; Tastard E; Marchand J; Rouault JD; Denis F; Thiriet-Rupert S; Casse N; Morant-Manceau A
    Protist; 2014 Sep; 165(5):730-44. PubMed ID: 25250954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pogo transposase contains a putative helix-turn-helix DNA binding domain that recognises a 12 bp sequence within the terminal inverted repeats.
    Wang H; Hartswood E; Finnegan DJ
    Nucleic Acids Res; 1999 Jan; 27(2):455-61. PubMed ID: 9862965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mariner transposons belonging to the irritans subfamily were maintained in chordate genomes by vertical transmission.
    Sinzelle L; Chesneau A; Bigot Y; Mazabraud A; Pollet N
    J Mol Evol; 2006 Jan; 62(1):53-65. PubMed ID: 16408242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.